【数字信号处理】相关函数应用 ( 正弦信号 的 自相关函数 分析 二 | 在白噪声中检测正弦信号 )

举报
韩曙亮 发表于 2022/03/06 23:21:08 2022/03/06
【摘要】 文章目录 一、正弦信号 的 自相关函数 分析 一、正弦信号 的 自相关函数 分析 正弦信号 s...





一、正弦信号 的 自相关函数 分析



正弦信号 s ( n ) = A sin ⁡ ω n s(n) = A \sin \omega n s(n)=Asinωn ,

其 幅度 A = 3.166 A = 3.166 A=3.166 , 功率 P s = 5.01 P_s = 5.01 Ps=5.01 , 信号长度为 512 512 512 ;

下图是该正弦信号的函数图 :

在这里插入图片描述

白噪声信号 N ( n ) N(n) N(n) , 方差 1 1 1 , 信噪比 S N R = 7 d B \rm SNR = 7dB SNR=7dB , 信号长度为 512 512 512 ;

下图是 正弦信号 s ( n ) = A sin ⁡ ω n s(n) = A \sin \omega n s(n)=Asinωn 与 白噪声信号 N ( n ) N(n) N(n) 叠加后的 函数图 :

在这里插入图片描述

从上图中 , 可以大概分辨出信号 , 比上一篇博客 【数字信号处理】相关函数应用 ( 正弦信号 的 自相关函数 分析 | 在白噪声中检测正弦信号 ) 中 , 叠加后的信号 明显很多 , 下图是上一篇博客中叠加后的信号 :

在这里插入图片描述
上图的叠加信号 , 基本无法辨识 ;

求 正弦信号 s ( n ) = A sin ⁡ ω n s(n) = A \sin \omega n s(n)=Asinωn 与 白噪声信号 N ( n ) N(n) N(n) 叠加后 的信号的 相关函数 r ( m ) r(m) r(m) , 可以得到如下的函数图 :

在这里插入图片描述

在 自相关函数 r ( m ) r(m) r(m) 中的 m = 0 m = 0 m=0 点处 , 相关性很大 , 此处是
信 号 功 率 + 噪 声 功 率 = 6.01 信号功率 + 噪声功率 = 6.01 +=6.01

信号功率是 5.01 5.01 5.01 , 噪声的功率是 1 1 1 ,

m = 0 m = 0 m=0 处 , 白噪声的功率是 1 1 1 , 信号的功率是 5.01 5.01 5.01 ;

在其它地方 m ≠ 0 m \not= 0 m=0 时 , 白噪声功率趋近于 0 0 0 , 只剩下 信号功率了 , 这样实现了在 噪声中 检测 信号 ;


信号的功率越大 , 越容易识别噪声中的信号 ;

文章来源: hanshuliang.blog.csdn.net,作者:韩曙亮,版权归原作者所有,如需转载,请联系作者。

原文链接:hanshuliang.blog.csdn.net/article/details/123249724

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。