CVPR2020图像生成模型PULSE 环境搭建、测试简记 、CVPR2020

举报
墨理学AI 发表于 2022/02/14 14:28:46 2022/02/14
【摘要】 超分重建
  • 🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
  • 1-0

    备注:小白笔记,感谢查阅


    基础信息



    pulse 环境搭建


    • 服务器:Ubuntu16.04 GTX1060 6G * 8
    • 个人用户:CUDA版本 9.2;cudnn 7.6.2 ;
    • 因此适配的pytorch为 torch==1.5.0+cu92 torchvision==0.6.0+cu92

    pytorch 官方安装 命令

    conda create -n torch15 python=3.8.2
    
    source activate torch15
    
    pip install torch==1.5.0+cu92 torchvision==0.6.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html
    
    pip install pandas
    
    pip install  requests
    
    pip install scipy==1.4.1
    
    pip install dlib==19.19.0
    
    
    • 下载预训练模型,我下载好的预训练模型在此分享:
    链接:https://pan.baidu.com/s/1fJ1qtN2NyeCNr0HnCWriOA 
    提取码:cool
    

    使用预训练模型进行,测试:

    1、检测原图中的人脸并下采样到 32x32 大小,保存到:input 目录中;

    python align_face.py -input_dir dataset/mix
    

    2、基于 32x32 的人脸小图,重建生成 1024x1024 的高清人脸大图,保存到: runs 目录中;

    python run.py   
    

    效果如下:
    1

    2

    3


    pulse 文章的意义和创新


    杜克大学的研究团队研发了一个AI图像生成模型PULSE。PULSE可以在5秒钟内将低分辨率的人像转换成清晰、逼真的人像。

    要指出的是,PULSE所做的工作并不是把低分辨率“还原”到高分辨率,而是输出许多张可能的高分辨率图像。比如,用户输入一张16-16分辨率的图像,PLUSE可输出一组1024-1024分辨率的图像。

    这项研究于本月在计算机视觉与模式识别顶会CVPR 2020上发表,论文标题为《PULSE:通过对生成模型的潜在空间探索实现自监督照片上采样(PULSE:Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models)》。
    1
    二、方法: 降尺寸损失方法:用生成图像“倒推”模糊图,相似才能输出

    为了保证输出图像与输入图像的“对应性”,研究人员在PULSE模型中应用了一种“降尺度损失(downscaling loss)”方法。

    当PULSE模型的生成网络提议以一张清晰图像作为输出时,判别网络会把这张清晰图像的分辨率降低到与输入图像相等的水平。然后,判别网络会对比降尺度损失图像与输入图像之间的相似性。

    只有在降尺度损失图像与输入图像相似性较高时,判别网络才会判定生成网络提议的清晰图片可以作为输出。

    2

    三、40位评估者参与打分,PULSE模型MOS得分最高

    研究人员用高分辨人脸数据集CelebA HQ评估PLUSE的性能。为了进行对比,研究人员利用CelebA HQ数据集训练了监督模型BICBIC、FSRNET和FSRGAN。

    所有模型均以1616分辨率的图像作为输入,BICBIC、FSRNET和FSRGAN模型以128128分辨率图像作为输出,PLUSE模型以128128分辨率图像和10241024分辨率图像作为输出。

    评估结果显示,图像质量方面,PULSE模型在生成眼睛、嘴唇等图像细节方面的能力优于其他模型。
    4

    5


    自己对论文的总结


    • 训练数据(无需对成对的LR-HR图像数据集)

    1

    • 训练过程

    9

    • 重建效果
      2

    3

    • 评价指标
      1

    2

    • 作者总结:我们已经建立了用于图像超分辨率的新方法以及新的问题表述。
      与传统的CNN监督工作相比,这为沿着不同轨道的超分辨率方法开辟了一条新途径。 该方法不仅限于在训练过程中看到的特定 degradation operator ,而且始终保持较高的感知质量。

    🚀🚀 AI之路、道阻且长


    📙 博主 AI 领域八大干货专栏、诚不我欺


    📙 预祝各位 前途似锦、可摘星辰


  • 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
  • ❤️ 过去的每一天、想必你也都有努力、祝你披荆斩棘、未来可期
  • 9-9

    【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
    • 点赞
    • 收藏
    • 关注作者

    评论(0

    0/1000
    抱歉,系统识别当前为高风险访问,暂不支持该操作

    全部回复

    上滑加载中

    设置昵称

    在此一键设置昵称,即可参与社区互动!

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。