StyleMapGAN、有趣的风格迁移——评测【一】
🥇 版权: 本文由【墨理学AI】原创、各位大佬、一文读懂、敬请查阅 🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
声明:本博文按照官方readMe步骤,对测试实验过程进行简洁记录,仅供参考,码字不易,感谢支持
📔 StyleMapGAN 继 StyleGAN2 发扬光大
- https://github.com/naver-ai/StyleMapGAN
- https://arxiv.org/pdf/2104.14754.pdf
- Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
论文摘要
生成对抗网络 (GAN) 从随机潜在向量合成逼真的图像。 尽管操纵潜在向量控制了合成输出,但使用 GAN 编辑真实图像存在以下问题:i) 将真实图像投影到潜在向量的优化耗时,ii) 或通过编码器嵌入不准确。 我们提出 StyleMapGAN:中间潜在空间具有空间维度,并且空间变体调制替代了 AdaIN。 它使通过编码器的嵌入比现有的基于优化的方法更准确,同时保持 GAN 的特性。 实验结果表明,我们的方法在各种图像处理任务(例如本地编辑和图像插值)中明显优于最先进的模型。 最后但并非最不重要的一点是,GAN 上的传统编辑方法在我们的 StyleMapGAN 上仍然有效。
📕 环境搭建
服务器:ubuntu1~18.04 Quadro RTX 5000 16G
- vim install.sh 内容如下,都是常规库,很好安装【此处不再赘述】
- linux和window设置 pip 镜像源 + 加速下载 + 你可能会需要
- Linux下cuda10.0安装Pytorch和Torchvision——啥版本都能装
#!/bin/bash
conda install -y pytorch=1.4.0 torchvision=0.5.0 -c pytorch
conda install -y numpy=1.18.1 scikit-image=0.16.2 tqdm
conda install -y -c anaconda ipython=7.13.0
pip install lmdb==0.98 opencv-python==4.2.0.34 munch==2.5.0
pip install -U scikit-image==0.15.0 scipy==1.2.1 matplotlib scikit-learn
pip install flask==1.0.2 pillow==7.0.0
我博文已经搭建了很多环境,因此这里直接 activate 一个即可
conda activate torch15
📗 测试数据 + 预训练模型准备
这里 下载 afhq 相关数据 + 模型,对其进行测试
# Download raw images and create LMDB datasets using them
# Additional files are also downloaded for local editing
bash download.sh create-lmdb-dataset afhq
# Download the pretrained network (256x256)
bash download.sh download-pretrained-network-256 afhq
# Download the pretrained network (1024x1024 image / 16x16 stylemap / Light version of Generator)
bash download.sh download-pretrained-network-1024 ffhq_16x16
📘 Generate images 测试
🔴 Reconstruction
Reconstruction Results are saved to expr/reconstruction.
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type reconstruction --test_lmdb data/afhq/LMDB_test
单卡 GPU 占用 11073MiB
reconstruction 目录下是对 afhq_raw\raw_images\test\images 目录下 500 test 图像的 重建:
🔴 Unaligned transplantation
Unaligned transplantation Results are saved to expr/transplantation. It shows local transplantations examples of AFHQ.
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type transplantation --test_lmdb data/afhq/LMDB_test
transplantation 目录下是一个图像的合成转换:
🔴 w_interpolation
Results are saved to expr/w_interpolation.
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type w_interpolation --test_lmdb data/afhq/LMDB_test
单卡 GPU 占用 8769MiB
🔴 local_editing
Results are saved to expr/local_editing. We pair images using a target semantic mask similarity.
目标 mask 语义修复
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type local_editing --test_lmdb data/afhq/LMDB_test
单卡 GPU 占用 9013MiB
- mask 图像
local_editing\afhq\synthesized_image
🔴 Random Generation
Random Generation Results are saved to expr/random_generation. It shows random generation examples.
python generate.py --mixing_type random_generation --ckpt expr/checkpoints/afhq_256_8x8.pt
单卡 GPU 占用 12995MiB
🔴 Style Mixing
Style Mixing Results are saved to expr/stylemixing. It shows style mixing examples.
python generate.py --mixing_type stylemixing --ckpt expr/checkpoints/afhq_256_8x8.pt --test_lmdb data/afhq/LMDB_test
单卡 GPU 占用 8765 MiB
- 粗修复结果: 124_coarse.png
- 细修复结果: 124_fine.png
🔴 Semantic Manipulation 【 celeba_hq 可正常运行】
Semantic Manipulation Results are saved to expr/semantic_manipulation.
It shows local semantic manipulation examples.
python semantic_manipulation.py --ckpt expr/checkpoints/afhq_256_8x8.pt --LMDB data/afhq/LMDB --svm_train_iter 10000
单卡 GPU 占用 6455MiB
遇到报错 | Semantic Manipulation 应该暂时只有 celeba_hq 可以使用和运行
validate boundary.
Accuracy for validation set: 535 / 999 = 0.535536
classifier.coef_.shape (1, 4096)
boundary.shape (64, 8, 8)
30000 images, 16130 latent_codes
Traceback (most recent call last):
File "semantic_manipulation.py", line 348, in <module>
assert total_number == len(latent_codes)
AssertionError
📙 博主 AI 领域八大干货专栏、诚不我欺
- 🍊 计算机视觉: Yolo专栏、一文读懂
- 🍊 计算机视觉:图像风格转换–论文–代码测试
- 🍊 计算机视觉:图像修复-代码环境搭建-知识总结
- 🍊 计算机视觉:超分重建-代码环境搭建-知识总结
- 🍊 深度学习:环境搭建,一文读懂
- 🍊 深度学习:趣学深度学习
- 🍊 落地部署应用:模型部署之转换-加速-封装
- 🍊 CV 和 语音数据集:数据集整理
🚀🚀 墨理学AI
🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️ ❤️ 如果文章对你有帮助、点赞、评论鼓励博主的每一分认真创作
-
📆 最近更新:2022年1月10日
-
🍊 点赞 👍 收藏 ⭐留言 📝 都是博主坚持写作、更新高质量博文的最大动力!
- 点赞
- 收藏
- 关注作者
评论(0)