numpy中计算矩阵数值的核心函数
简 介:
关键词
: 矩阵,分解,QR
§01 矩阵的迹
1.1 定义
- 参考文献: Trace of a matrix
对于方形矩阵 A A A 是一个 K × K K \times K K×K 的矩阵,它的迹,记为 t r a c e ( A ) trace\left( A \right) trace(A) ,或者 t r ( A ) tr\left( A \right) tr(A) 定义为矩阵对角线元素累加和: t r ( A ) = ∑ k = 1 K A k k tr\left( A \right) = \sum\limits_{k = 1}^K {A_{kk} } tr(A)=k=1∑KAkk 。
例如下面的矩阵: A = [ 2 1 5 2 3 4 0 1 0 ] A =
t r ( A ) = A 11 + A 22 + A 33 = 2 + 3 + 0 = 5 tr\left( A \right) = A_{11} + A_{22} + A_{33} = 2 + 3 + 0 = 5 tr(A)=A11+A22+A33=2+3+0=5
1.2 性质
t r ( A + B ) = t r ( A ) + t r ( B ) tr\left( {A + B} \right) = tr\left( A \right) + tr\left( B \right) tr(A+B)=tr(A)+tr(B)
t r ( a A ) = a ⋅ t r ( A ) tr\left( {aA} \right) = a \cdot tr\left( A \right) tr(aA)=a⋅tr(A)
t r ( α A + β B ) = α ⋅ t r ( A ) + β ⋅ t r ( B ) tr\left( {\alpha A + \beta B} \right) = \alpha \cdot tr\left( A \right) + \beta \cdot tr\left( B \right) tr(αA+βB)=α⋅tr(A)+β⋅tr(B)
t r ( A T ) = t r ( A ) tr\left( {A^T } \right) = tr\left( A \right) tr(AT)=tr(A)
t r ( A B ) = t r ( B A ) tr\left( {AB} \right) = tr\left( {BA} \right) tr(AB)=tr(BA)
A B = t r ( A B ) = t r ( B A ) AB = tr\left( {AB} \right) = tr\left( {BA} \right) AB=tr(AB)=tr(BA)
1.3 相关函数
1.3.1 调用函数形式
import sys,os,math,time
import matplotlib.pyplot as plt
from numpy import *
A = array([[1,2,3],[4,5,6],[7,8,9]])
print("trace(A): {}\n".format(trace(A)))
- 1
- 2
- 3
- 4
- 5
- 6
trace(A): 15
- 1
1.3.2 利用迹计算两个矩阵的内积
import sys,os,math,time
import matplotlib.pyplot as plt
from numpy import *
A = random.randn(15,8)
B = random.randn(15,8)
C = A.T.dot(B)
print("trace(C): {}\n".format(trace(C)))
print("sum(A*B): {}\n".format(sum(A*B)))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
trace(C): -9.301644996885578
sum(A*B): -9.301644996885576
- 1
- 2
§02 QR分解
2.1 定义
对于矩阵 A,可以将其表示成: A = Q ⋅ R A = Q \cdot R A=Q⋅R 。其中 Q Q Q 是正交矩阵, R R R 是上三角矩阵。
2.2 分解举例
分解一个5×3随机矩阵。
import sys,os,math,time
import matplotlib.pyplot as plt
from numpy import *
A = random.randn(5,3)
print("A: {}\n".format(A))
q,r = linalg.qr(A)
print("q: {}\n".format(q),"r: {}\n".format(r))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
A: [[-1.86374906 -1.14492839 0.25085956]
[ 0.84097176 0.47786409 0.63319386]
[-1.2215861 -0.84129822 -0.68549399]
[ 0.14952506 -1.41793941 -0.28392431]
[-0.7815916 -1.56835016 -0.23617405]]
q: [[-0.74216383 0.11278664 0.58823716]
[ 0.33488351 -0.07192668 0.58284231]
[-0.48644801 0.02461369 -0.55319958]
[ 0.0595424 -0.8284496 -0.04030384]
[-0.31123773 -0.54329656 0.08134932]]
r: [[2.51123671 1.82270331 0.41592522]
[0. 1.84255932 0.32940707]
[0. 0. 0.88806271]]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
可以验证 q 矩阵是正交矩阵:
print("q.T.dot(q): {}\n".format(q.T.dot(q)))
- 1
q.T.dot(q): [[1.00000000e+00 3.84861072e-17 2.96333633e-16]
[3.84861072e-17 1.00000000e+00 8.91050746e-17]
[2.96333633e-16 8.91050746e-17 1.00000000e+00]]
- 1
- 2
- 3
§03 特殊矩阵
3.1 空矩阵
n = empty((5,5))
print("n: {}\n".format(n))
- 1
- 2
n: [[3.42247464e-316 3.42249708e-316 3.42250182e-316 3.06800300e-316
3.42251605e-316]
[3.42252079e-316 3.42252553e-316 3.42253028e-316 3.42253502e-316
3.06797454e-316]
[3.42253976e-316 3.42254925e-316 3.42250656e-316 3.42251130e-316
3.42248759e-316]
[3.06797928e-316 3.06800774e-316 3.06799351e-316 3.06798403e-316
3.06798877e-316]
[3.06794608e-316 3.06796505e-316 3.06796980e-316 3.42254451e-316
1.04878799e+248]]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
3.2 零矩阵
n = zeros((5,5))
print("n: {}\n".format(n))
- 1
- 2
n: [[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
- 1
- 2
- 3
- 4
- 5
3.3 1矩阵
n = ones((5,5))
print("n: {}\n".format(n))
- 1
- 2
n: [[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]
- 1
- 2
- 3
- 4
- 5
3.4 对角线矩阵
n = eye(3,4,0)
print("n:\n{}".format(n))
- 1
- 2
n:
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]]
- 1
- 2
- 3
- 4
n = eye(3,4,1)
print("n:\n{}".format(n))
- 1
- 2
n:
[[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]
- 1
- 2
- 3
- 4
n = eye(3,4,-1)
print("n:\n{}".format(n))
- 1
- 2
n = diag([1,2,3,4])
print("n:\n{}".format(n))
- 1
- 2
n:
[[1 0 0 0]
[0 2 0 0]
[0 0 3 0]
[0 0 0 4]]
- 1
- 2
- 3
- 4
- 5
▲ 图3.4.1 Matrix Diagnoal
3.5 随机矩阵
n = random.random((5,4))
print("n:\n{}".format(n))
- 1
- 2
n:
[[0.01356284 0.90473283 0.97940574 0.28104009]
[0.47466198 0.27617192 0.74221122 0.20462867]
[0.34521728 0.46786105 0.24819072 0.71578562]
[0.51775933 0.51530835 0.06254809 0.92659839]
[0.30551515 0.60956763 0.43818475 0.31937707]]
- 1
- 2
- 3
- 4
- 5
- 6
■ 相关文献链接:
● 相关图表链接:
文章来源: zhuoqing.blog.csdn.net,作者:卓晴,版权归原作者所有,如需转载,请联系作者。
原文链接:zhuoqing.blog.csdn.net/article/details/122531852
- 点赞
- 收藏
- 关注作者
评论(0)