【Netty】mmap 和 sendFile 零拷贝原理
一、 零拷贝 简介
零拷贝作用 : 在网络编程中 , 如果要进行性能优化 , 肯定要涉及到零拷贝 , 使用零拷贝能极大的提升数据传输性能 ;
零拷贝类型 : mmap ( 内存映射 ) 和 sendFile;
数据角度分析 : 在零拷贝机制中 , 整个数据在内存中只有一份数据 , 非零拷贝机制中 , 内核缓冲区 , 用户缓冲区 , Socket 缓冲区 , 各有一份数据 ;
零拷贝指的是没有 CPU 拷贝 , 都是 DMA ( 直接内存访问 ) 拷贝 ;
零拷贝性能优势 : 没有复制数据带来的内存开销 , 没有 CPU 拷贝 , 直接节省了大量 CPU 计算资源 ;
二、 传统 BIO 数据拷贝分析 ( 4拷贝 4切换 )
传统 BIO 数据拷贝代码示例 :
package kim.hsl.nio.zerocopy;
import java.io.FileInputStream;
import java.io.IOException;
import java.net.Inet4Address;
import java.net.InetSocketAddress;
import java.net.Socket;
public class BIOClientDemo {
public static void main(String[] args) {
try {
// 客户端与服务器端连接过程忽略, 主要是分析数据拷贝过程
Socket socket = new Socket();
InetSocketAddress inetSocketAddress =
new InetSocketAddress(Inet4Address.getLocalHost(), 8888);
socket.connect(inetSocketAddress);
// 分析下面过程中, 数据拷贝次数, 和用户态与内核态的转换次数
// 1. 从文件中读取数据
FileInputStream fileInputStream = new FileInputStream("file.txt");
byte[] buffer = new byte[1024];
// 首先将硬盘中的文件, 进行 DMA 拷贝, 此处对应 read 方法,
// 将文件数据从硬盘中拷贝到 内核缓冲区 ( 用户态切换成内核态 )
// 将内核缓冲区中的数据, 通过 CPU 拷贝 方式, 拷贝到 用户缓冲区 ( 内核态切换成用户态 )
int readLen = fileInputStream.read(buffer);
// 2. 写出数据到服务器
// 将用户缓冲区中的数据, 再次通过 CPU 拷贝方式, 拷贝到 Socket 缓冲区 ( 用户态切换成内核态 )
// 再次使用 DMA 拷贝, 将 Socket 缓冲区中的数据拷贝到 协议栈 ( Protocol Engine ) 中
socket.getOutputStream().write(buffer, 0, readLen);
} catch (IOException e) {
e.printStackTrace();
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
分析上述代码中数据拷贝次数 , 用户态与内核态状态切换 ;
1 . fileInputStream.read(buffer) 操作数据拷贝及状态转换分析 :
① 硬盘 ( 初始用户态 ) -> 内核缓冲区 ( 内核态 ) : 首先将硬盘中的文件 , 进行 DMA [ 1 ] ^{[1]} [1] 拷贝 , 此处对应 read 方法 , 将文件数据从硬盘中拷贝到 内核缓冲区 ; ( 用户态切换成内核态 )
② 内核缓冲区 ( 内核态 ) -> 用户缓冲区 ( 用户态 ) : 将内核缓冲区中的数据 , 通过 CPU 拷贝 方式 , 拷贝到 用户缓冲区 ; ( 内核态切换成用户态 )
2 . socket.getOutputStream().write(buffer, 0, readLen) 操作数据拷贝及状态转换分析 :
① 用户缓冲区 ( 用户态 ) -> Socket 缓冲区 ( 内核态 ) : 将用户缓冲区中的数据 , 再次通过 CPU 拷贝 方式 , 拷贝到 Socket 缓冲区 ; ( 用户态切换成内核态 )
② Socket 缓冲区 ( 内核态 ) -> 协议栈 : 再次使用 DMA [ 1 ] ^{[1]} [1] 拷贝 , 将 Socket 缓冲区中的数据拷贝到 协议栈 ( Protocol Engine ) 中 ;
3 . 总结 : 上述进行了 4 4 4 次拷贝 , 3 3 3 次用户态与内核态之间的状态切换 , 代价很高 ;
① 拷贝次数分析 : 开始时数据存储在 硬盘文件 中 , 直接内存拷贝 ( Direct Memory Access ) 到 内核缓冲区 , CPU 拷贝 到 用户缓冲区 , CPU 拷贝 到 Socket 缓冲区 , 直接内存拷贝 ( Direct Memory Access ) 到 协议栈 ;
硬盘文件 -> 内核缓冲区 ( 内核空间 ) -> 用户缓冲区 ( 用户空间 ) -> Socket 缓冲区 ( 内核空间 ) -> 协议栈
② 状态改变分析 : 开始运行的是用户应用程序 , 起始状态肯定是用户态 , 之后将硬盘文件数据拷贝到内核缓冲区后 , 转为内核态 , 之后又拷贝到了用户缓冲区 , 转为用户态 ; 数据写出到 Socket 缓冲区 , 又转为内核态 , 最后再切换成用户态 , 执行后续应用程序代码逻辑 ;
用户态 -> 内核态 -> 用户态 -> 内核态 -> 用户态
[ 1 ] [1] [1] DMA 全称 ( Direct Memory Access ) , 直接内存拷贝 , 该拷贝通过内存完成 , 不涉及 CPU 参与 ;
三、 mmap 内存映射 ( 3拷贝 4切换 )
将硬盘中的文件映射到 内核缓冲区 , 用户空间中的应用程序也可以访问该 内核缓冲区 中的数据 , 使用这种机制 , 原来的 4 4 4 次数据拷贝减少到了 3 3 3 次 ,
1 . mmap 数据拷贝过程 :
① 硬盘文件 -> 内核缓冲区 : 硬盘文件数据 , DMA 拷贝到 内核缓冲区 中 , 应用程序可以直接访问该 内核缓冲区中的数据 ;
② 内核缓冲区 -> Socket 缓冲区 : 内核缓冲区 数据 , 通过 CPU 拷贝到 Socket 缓冲区 ;
③ Socket 缓冲区 -> 协议栈 : Socket 缓冲区 数据 , 通过 DMA 拷贝到 协议栈 ;
硬盘文件 -> 内核缓冲区 ( 内核空间 ) -> Socket 缓冲区 ( 内核空间 ) -> 协议栈
2 . mmap 状态切换 : 其状态切换还是 3 3 3 次 , 由初始状态 用户态 , 在拷贝数据到内核缓冲区时 , 切换成内核态 , 访问该内核缓冲区数据时 , 又切换成用户态 , 将数据拷贝到 Socket 缓冲区时 , 切换成内核态 , 最后再切换成用户态 , 执行后续应用程序代码逻辑 ;
用户态 -> 内核态 -> 用户态 -> 内核态 -> 用户态
四、 sendFile 函数 ( Linux 2.1 优化 ) ( 3拷贝2切换 )
sendFile 是 Linux 提供的函数 , 其实现了由 内核缓冲区 直接将数据拷贝到 Socket 缓冲区 , 该操作直接在内核空间完成 , 不经过用户空间 , 没有用户态参与 , 因此 减少了一次用户态切换 ;
此次优化 , 由原来的 4 4 4 次拷贝 , 3 3 3 次状态切换 , 变成 3 3 3 次拷贝 , 2 2 2 次状态切换 ;
1 . sendFile 函数 数据拷贝分析 :
① 硬盘文件 -> 内核缓冲区 : 硬盘文件数据 , DMA 拷贝到 内核缓冲区 中 ;
② 内核缓冲区 -> Socket 缓冲区 : 内核缓冲区 数据 , 通过 CPU 拷贝到 Socket 缓冲区 ;
③ Socket 缓冲区 -> 协议栈 : Socket 缓冲区 数据 , 通过 DMA 拷贝到 协议栈 ;
硬盘文件 -> 内核缓冲区 ( 内核空间 ) -> Socket 缓冲区 ( 内核空间 ) -> 协议栈
2 . sendFile 函数 状态切换分析 : 其状态切换只有 2 2 2 次 , 由初始状态 用户态 , 在拷贝数据到内核缓冲区时 , 切换成内核态 , 在内核态直接将数据拷贝到 Socket 缓冲区时 , 还是处于内核状态 , 之后拷贝到协议栈时 , 变成用户状态 ;
用户态 -> 内核态 -> 用户态
五、 sendFile 函数 ( Linux 2.4 优化 ) ( 2拷贝 2切换 )
sendFile 是 Linux 提供的函数 , 其在 Linux 2.4 版本中 , 直接将数据从 内核缓冲区 拷贝到 协议栈 中 ;
此次优化 , 由原来的 4 4 4 次拷贝 , 3 3 3 次状态切换 , 变成 2 2 2 次拷贝 , 2 2 2 次状态切换 ;
1 . sendFile 函数 数据拷贝分析 : 全称 DMA 拷贝 , 没有 CPU 拷贝 ;
① 硬盘文件 -> 内核缓冲区 : 硬盘文件数据 , DMA 拷贝到 内核缓冲区 中 ;
② 内核缓冲区 -> -> 协议栈 : 通过 DMA 拷贝 , 将 内核缓冲区 中的数据直接拷贝到 协议栈 ;
硬盘文件 -> 内核缓冲区 ( 内核空间 ) -> 协议栈
2 . sendFile 函数 状态切换分析 : 其状态切换只有 2 2 2 次 , 由初始状态 用户态 , 在拷贝数据到内核缓冲区时 , 切换成内核态 , 在内核态直接将数据拷贝到协议栈时 , 变成用户状态 ;
用户态 -> 内核态 -> 用户态
3 . 少量 CPU 拷贝 : 该机制还存在少量的 CPU 拷贝 , 其 对性能的消耗忽略不计 ; 这些 CPU 拷贝操作是从 内核缓冲区 中将数据的长度 ( Length ) , 偏移量 ( Offset ) 拷贝到 Socket 缓冲区 ;
文章来源: hanshuliang.blog.csdn.net,作者:韩曙亮,版权归原作者所有,如需转载,请联系作者。
原文链接:hanshuliang.blog.csdn.net/article/details/106438212
- 点赞
- 收藏
- 关注作者
评论(0)