Opencv基础使用1——分割 - 视频人像跟踪
【摘要】
opencv-master 4.5.1 - Python 示例代码运行测试 ( 一 ) | 分割 - 视频人像跟踪
文章目录
环境搭建opencv-master4.5.1 Python...
opencv-master 4.5.1 - Python 示例代码运行测试 ( 一 ) | 分割 - 视频人像跟踪
文章目录
-
- 环境搭建
- opencv-master4.5.1 Python 边缘检测算子测试
- 图像分割测试
- 计算 视频帧的 PSNR 、SSIM
- Background subtraction method(视频人像跟踪 - 背景提取)
- 基于颜色分布的连续自适应均值漂移【跟踪】算法(camshift algorithm)
- Lucas-Kanade Optical Flow calculation【光流计算跟踪】
- This program demonstrates line finding with the Hough transform【使用霍夫变换进行寻线的过程】
- Sample code that shows the functionality of copyMakeBorder【检测 图像边框】
- 镜像 翻转
- 图像变形 -- 旋转角度
环境搭建
系统环境 【 这里是用的 Linux 虚拟机 】
cat /etc/issue
Ubuntu 20.04.2 LTS \n \l
- 1
- 2
- 3
- 4
- 5
conda 新建独立环境如下:
conda create -n py369 python=3.6.9
conda activate py369
pip install opencv-python
pip install matplotlib
pip install numpy
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
运行环境 pip list 如下:
pip list
Package Version
--------------- -------------------
certifi 2020.12.5
cycler 0.10.0
kiwisolver 1.3.1
matplotlib 3.3.4
numpy 1.19.5
opencv-python 4.5.1.48
Pillow 8.2.0
pip 21.0.1
pyparsing 2.4.7
python-dateutil 2.8.1
setuptools 52.0.0.post20210125
six 1.15.0
wheel 0.36.2
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
其它版本下载地址:https://github.com/opencv/opencv/releases
- 本博文的测试是直接拉取 opencv-master4.5.1,然后在opencv/samples/python/tutorial_code/ImgTrans 目录下对相应 py 文件进行测试
opencv-master4.5.1 Python 边缘检测算子测试
测试所输入数据
- opencv-master4.5.1/opencv/samples/data 目录下有测试可用数据
lena.jpg 原图:
cd pyOpenCVLearn/opencv/samples/python
cp opencv/samples/data/lena.jpg .
- 1
- 2
- 3
Sobel 算子
cd pyOpenCVLearn/opencv/samples/python/tutorial_code/ImgTrans/SobelDemo
python sobel_demo.py ../../../lena.jpg
- 1
- 2
- 3
运行效果如下:
LaPlace 算子
cd pyOpenCVLearn/opencv/samples/python/tutorial_code/ImgTrans/LaPlace
python laplace_demo.py ../../../lena.jpg
- 1
- 2
- 3
canny 算子 detector
cd pyOpenCVLearn/opencv/samples/python/tutorial_code/ImgTrans/canny_detector
python CannyDetector_Demo.py --input ../../../lena.jpg
- 1
- 2
- 3
- 4
运行效果如下:
图像分割测试
Code for Image Segmentation with Distance Transform and Watershed Algorithm
cd opencv/samples/python/tutorial_code/ImgTrans/distance_transformation
python imageSegmentation.py --input ../../../../data/cards.png
- 1
- 2
- 3
效果如下:
计算 视频帧的 PSNR 、SSIM
这个代码感觉对于 超分重建 PSNR 计算还是有些许参考价值的;
cd opencv/samples/python/tutorial_code/videoio
python video-input-psnr-ssim.py -r ../../../data/Megamind.avi -t ../../../data/Megamind_bugy.avi
- 1
- 2
- 3
- 4
输出大致如下:
Frame: 0# 0dB
Frame: 1# 41.279dB
Frame: 2# 41.354dB
Frame: 3# 41.201dB
Frame: 4# 41.043dB
Frame: 5# 19.214dB MSSISM: R 94.69% G 93.39% B 90.06%
Frame: 6# 40.818dB
Frame: 7# 41.046dB
Frame: 8# 40.919dB
Frame: 9# 41.166dB
Frame: 10# 15.832dB MSSISM: R 93.17% G 91.99% B 88.64%
Frame: 11# 40.767dB
Frame: 12# 41.016dB
Frame: 13# 40.746dB
Frame: 14# 41.186dB
Frame: 15# 40.297dB
Frame: 16# 40.44dB
Frame: 17# 40.97dB
Frame: 18# 40.846dB
Frame: 19# 40.727dB
Frame: 20# 22.09dB MSSISM: R 94.64% G 93.88% B 90.64%
Frame: 21# 40.953dB
Frame: 22# 40.845dB
Frame: 23# 40.894dB
Frame: 24# 40.776dB
Frame: 25# 22.021dB MSSISM: R 93.1% G 91.86% B 89.21%
Frame: 26# 40.067dB
Frame: 27# 39.661dB
Frame: 28# 39.176dB
Frame: 29# 39.289dB
Frame: 30# 21.877dB MSSISM: R 90.4% G 88.64% B 86.24%
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
Background subtraction method(视频人像跟踪 - 背景提取)
cd opencv/samples/python/tutorial_code/video/background_subtraction
python bg_sub.py --input ../../../../data/vtest.avi
- 1
- 2
- 3
效果如下:
# Background subtraction method (KNN, MOG2)
# 算法设置为 KNN 测试如下:
python bg_sub.py --input ../../../../data/vtest.avi --algo KNN
- 1
- 2
- 3
- 4
基于颜色分布的连续自适应均值漂移【跟踪】算法(camshift algorithm)
有兴趣了解这个算法可以自行检索该算法相关文献:
脚本运行输入
运行代码如下:
# 下载的 mp4 文件 copy 到 opencv/samples/data/ 目录下
cp slow_traffic_small.mp4 opencv/samples/data/
cd opencv/samples/python/tutorial_code/video/meanshift
# 运行输入如下:
python camshift.py ../../../../data/slow_traffic_small.mp4
# 另外一个 meanshift.py 脚本也可以运行测试:
python meanshift.py ../../../../data/slow_traffic_small.mp4
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
运行效果如下:
Lucas-Kanade Optical Flow calculation【光流计算跟踪】
运行代码如下:
cd opencv/samples/python/tutorial_code/video/optical_flow
python optical_flow.py ../../../../data/slow_traffic_small.mp4
- 1
- 2
- 3
- 4
运行效果如下:
运行代码如下:
cd opencv/samples/python/tutorial_code/video/optical_flow
# 需要 把 vtest.avi copy 到当前目录作为默认输入
cp ../../../../data/vtest.avi .
python optical_flow_dense.py
- 1
- 2
- 3
- 4
- 5
- 6
- 7
效果如下:
This program demonstrates line finding with the Hough transform【使用霍夫变换进行寻线的过程】
运行代码如下:
cd /opencv/samples/python/tutorial_code/ImgTrans/HoughLine
# 把 opencv-master4.5.1\opencv\samples\data 目录下 代码使用的 数据 copy 到 当前目录
cp ../../../../data/sudoku.png .
python hough_lines.py
# 或者另一个 方法
cd ../HoughCircle/
cp ../../../../data/smarties.png .
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
运行效果如下:
Sample code that shows the functionality of copyMakeBorder【检测 图像边框】
运行代码如下:
cd opencv/samples/python/tutorial_code/ImgTrans/MakeBorder
cp ../../../../data/lena.jpg .
python copy_make_border.py
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
效果如下:
镜像 翻转
运行代码如下:
cd opencv/samples/python/tutorial_code/ImgTrans/remap
python Remap_Demo.py --input ../../../../data/chicky_512.png
- 1
- 2
- 3
- 4
- 5
效果如下:
图像变形 – 旋转角度
运行代码如下:
cd opencv/samples/python/tutorial_code/ImgTrans/warp_affine
python Geometric_Transforms_Demo.py --input ../../../../data/lena.jpg
- 1
- 2
- 3
效果如下:
文章来源: positive.blog.csdn.net,作者:墨理学AI,版权归原作者所有,如需转载,请联系作者。
原文链接:positive.blog.csdn.net/article/details/117224999
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)