图像分割与距离变换和流域算法
【摘要】
1.文章内容
使用OpenCV函数cv ::filter2D为了执行一些拉普拉斯过滤,来进行图像锐化 使用OpenCV函数cv ::distanceTransform来获得二进制图像的导出表示,其中每个像素的值被替换为最近的背景像素的距离 使用OpenCV函数cv ::watershed来隔离图像...
1.文章内容
- 使用OpenCV函数cv ::filter2D为了执行一些拉普拉斯过滤,来进行图像锐化
- 使用OpenCV函数cv ::distanceTransform来获得二进制图像的导出表示,
- 其中每个像素的值被替换为最近的背景像素的距离
- 使用OpenCV函数cv ::watershed来隔离图像中的对象与背景
2.教程
This tutorial code's is shown lines below. You can also download it from here.
-
#include <opencv2/opencv.hpp>
-
#include <iostream>
-
using namespace std;
-
using namespace cv;
-
int main(int, char** argv)
-
{
-
// Load the image 加载图片
-
Mat src = imread(argv[1]);
-
// Check if everything was fine 检查数据是否完好
-
if (!src.data)
-
return -1;
-
// Show source image 展示原图片
-
imshow("Source Image", src);
-
// Change the background from white to black, since that will help later to extract
-
//改变背景从白色到黑色,因为这将有助于以后提取
-
// better results during the use of Distance Transform
-
//使用距离变换更好的效果
-
for( int x = 0; x < src.rows; x++ ) {
-
for( int y = 0; y < src.cols; y++ ) {
-
if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) {
-
src.at<Vec3b>(x, y)[0] = 0;
-
src.at<Vec3b>(x, y)[1] = 0;
-
src.at<Vec3b>(x, y)[2] = 0;
-
}
-
}
-
}
-
// Show output image 展示输出图片
-
imshow("Black Background Image", src);
-
// Create a kernel that we will use for accuting/sharpening our image
-
//创建一个我们将用于核算/锐化我们的图像的内核
-
Mat kernel = (Mat_<float>(3,3) <<
-
1, 1, 1,
-
1, -8, 1,
-
1, 1, 1); // an approximation of second derivative, a quite strong kernel
-
//二阶导数近似值,一个相当强的内核
-
// do the laplacian filtering as it is
-
// well, we need to convert everything in something more deeper then CV_8U
-
// because the kernel has some negative values,
-
// and we can expect in general to have a Laplacian image with negative values
-
// BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
-
// so the possible negative number will be truncated
-
-
//执行拉普拉斯滤镜
-
//好了,我们需要将所有东西都转换成更深层次的东西,然后CV_8U
-
//因为内核有一些负值,
-
//我们可以期待一般来说具有负值的拉普拉斯图像
-
//但是一个8bits unsigned int(我们正在使用的)可以包含从0到255的值
-
//所以可能的负数将被截断
-
Mat imgLaplacian;
-
Mat sharp = src; // copy source image to another temporary one
-
filter2D(sharp, imgLaplacian, CV_32F, kernel);
-
src.convertTo(sharp, CV_32F);
-
Mat imgResult = sharp - imgLaplacian;
-
// convert back to 8bits gray scale
-
//转换为8位灰度
-
imgResult.convertTo(imgResult, CV_8UC3);
-
imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
-
// imshow( "Laplace Filtered Image", imgLaplacian );
-
imshow( "New Sharped Image", imgResult );
-
src = imgResult; // copy back
-
// Create binary image from source image
-
//从源图像创建二进制图像
-
Mat bw;
-
cvtColor(src, bw, CV_BGR2GRAY);
-
threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
-
imshow("Binary Image", bw);
-
// Perform the distance transform algorithm
-
//执行距离变换算法
-
Mat dist;
-
distanceTransform(bw, dist, CV_DIST_L2, 3);
-
// Normalize the distance image for range = {0.0, 1.0}
-
// so we can visualize and threshold it
-
//范围= {0.0,1.0}的距离图像归一化
-
//所以我们可以可视化和限制它 normalize(dist, dist, 0, 1., NORM_MINMAX);
-
imshow("Distance Transform Image", dist);
-
// Threshold to obtain the peaks
-
// This will be the markers for the foreground objects
-
//获取峰值的阈值
-
//这将是前景对象的标记
-
threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
-
// Dilate a bit the dist image
-
//稀释一点dist图像
-
Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
-
dilate(dist, dist, kernel1);
-
imshow("Peaks", dist);
-
// Create the CV_8U version of the distance image
-
// It is needed for findContours()
-
//创建CV_8U版本的距离图像
-
// findContours()需要
-
Mat dist_8u;
-
dist.convertTo(dist_8u, CV_8U);
-
// Find total markers
-
//查找总标记
-
vector<vector<Point> > contours;
-
findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
-
// Create the marker image for the watershed algorithm
-
//为分水岭算法创建标记图像
-
Mat markers = Mat::zeros(dist.size(), CV_32SC1);
-
// Draw the foreground markers
-
//绘制前景标记
-
for (size_t i = 0; i < contours.size(); i++)
-
drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1);
-
// Draw the background marker
-
//绘制背景标记
-
circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
-
imshow("Markers", markers*10000);
-
// Perform the watershed algorithm
-
//执行分水岭算法
-
watershed(src, markers);
-
Mat mark = Mat::zeros(markers.size(), CV_8UC1);
-
markers.convertTo(mark, CV_8UC1);
-
bitwise_not(mark, mark);
-
// imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
-
// image looks like at that point
-
//取消注释,如果你想看看如何标记
-
//图像看起来就像这样
-
// Generate random colors
-
//生成随机颜色
-
vector<Vec3b> colors;
-
for (size_t i = 0; i < contours.size(); i++)
-
{
-
int b = theRNG().uniform(0, 255);
-
int g = theRNG().uniform(0, 255);
-
int r = theRNG().uniform(0, 255);
-
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
-
}
-
// Create the result image
-
//创建结果图像
-
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
-
// Fill labeled objects with random colors
-
//用随机颜色填充标签对象
-
for (int i = 0; i < markers.rows; i++)
-
{
-
for (int j = 0; j < markers.cols; j++)
-
{
-
int index = markers.at<int>(i,j);
-
if (index > 0 && index <= static_cast<int>(contours.size()))
-
dst.at<Vec3b>(i,j) = colors[index-1];
-
else
-
dst.at<Vec3b>(i,j) = Vec3b(0,0,0);
-
}
-
}
-
// Visualize the final image
-
//可视化最终图像
-
imshow("Final Result", dst);
-
waitKey(0);
-
return 0;
-
}
3.解释/结果
1.加载源图像并检查是否加载没有任何问题,然后显示
-
// Load the image 加载图片
-
Mat src = imread(argv[1]);
-
// Check if everything was fine
-
if (!src.data)
-
return -1;
-
// Show source image 展示图片
-
imshow("Source Image", src);
文章来源: yujiang.blog.csdn.net,作者:鱼酱2333,版权归原作者所有,如需转载,请联系作者。
原文链接:yujiang.blog.csdn.net/article/details/69941997
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)