机器学习笔记——皮尔逊相关系数
【摘要】
在学到相关性度量的时候,有一个系数用来度量相似性(距离),这个系数叫做皮尔逊系数,其实在统计学的时候就已经学过了,只是当时不知道还能用到机器学习中来,这更加让我觉得机器学习离不开统计学了。
皮尔逊相关系数——Pearson correlation coefficient,用于度量两个变量之间的相关性,其值介于-1与1之间,值越大则说明...
在学到相关性度量的时候,有一个系数用来度量相似性(距离),这个系数叫做皮尔逊系数,其实在统计学的时候就已经学过了,只是当时不知道还能用到机器学习中来,这更加让我觉得机器学习离不开统计学了。
皮尔逊相关系数——Pearson correlation coefficient,用于度量两个变量之间的相关性,其值介于-1与1之间,值越大则说明相关性越强。
两个变量之间的皮尔逊相关系数定义为两个变量之间的
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/27346963
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)