对梯度下降法的简单理解
【摘要】
梯度下降法又叫最速下降法,英文名为steepest descend method.估计搞研究的人应该经常听见这个算法吧,用来求解表达式最大或者最小值的,属于无约束优化问题。
首先我们应该清楚,一个多元函数的梯度方向是该函数值增大最陡的方向。具体化到1元函数中时,梯度方向首先...
梯度下降法又叫最速下降法,英文名为steepest descend method.估计搞研究的人应该经常听见这个算法吧,用来求解表达式最大或者最小值的,属于无约束优化问题。
首先我们应该清楚,一个多元函数的梯度方向是该函数值增大最陡的方向。具体化到1元函数中时,梯度方向首先是沿着曲线的切线的,然后取切线向上增长的方向为梯度方向,2元或者多元函数中,梯度向量为函数值f对每个变量的导数,该向量的方向就是梯度的方向,当然向量的大小也就是梯度的大小。
现在假设我们要求函数的最值,采用梯度下降法,如图所示:
梯度下降法的基本思想还是挺简单的,现假设我们要求函数f的最小值,首先得选取一个初始点后,然后下一个点的产生时是沿着梯度直线方向,这里是沿着梯度的反方向(因为求的是最小值,如果是求最大值的话则沿梯度的方向即
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/43732593
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)