机器学习-Random Forest算法简介
【摘要】
Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。
Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行...
Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。
Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行分类。
随机森林算法只需要两个参数:构建的决策树的个数t,在决策树的每个节点进行分裂时需要考虑的输入特征的个数m。
1. 单棵决策树的构建:
(1)令N为训练样例的个数,则单棵决策树的输入样例的个数为N个从训练集中有放回的随机抽取N个训练样例。
(2)令训练样例的输入特征的个数为M,切m远远小于M,则我们在每颗决策树的每个节点上进行分裂时,从M个输入特征里随机选择m个输入特征,然后从这m个输入特征里选择一个最好的进行分裂。m在构建决策树的过程中不会改变。
(3)每棵树都一直这样分裂下去,直到该节点的所有训练样例都属于同一类。不需要剪枝。
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/45026063
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)