偏差/方差、经验风险最小化、联合界、一致收敛

举报
格图洛书 发表于 2022/01/01 00:51:13 2022/01/01
1.2k+ 0 0
【摘要】 本篇与前面不同,主要内容不是算法,而是机器学习的另一部分内容——学习理论。主要包括偏差/方差(Bias/variance)、经验风险最小化(Empirical Risk Minization,ERM)、联合界(Union bound)、一致收敛(Uniform Convergence)。 Ng对学习理论的重要性很是强调,他说理...

本篇与前面不同,主要内容不是算法,而是机器学习的另一部分内容——学习理论。主要包括偏差/方差(Bias/variance)、经验风险最小化(Empirical Risk Minization,ERM)、联合界(Union bound)、一致收敛(Uniform Convergence)。

Ng对学习理论的重要性很是强调,他说理解了学习理论是对机器学习只懂皮毛的人和真正理解机器学习的人的区别。学习理论的重要性在于通过它能够针对实际问题更好的选择模型,修改模型。






文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/40736955

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

作者其他文章

评论(0

抱歉,系统识别当前为高风险访问,暂不支持该操作

    全部回复

    上滑加载中

    设置昵称

    在此一键设置昵称,即可参与社区互动!

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。