数据挖掘学习笔记之人工神经网络(一)
【摘要】
由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。
神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效学习方法。人工神经网络的研究在一定程度上受...
由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。
神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效学习方法。人工神经网络的研究在一定程度上受到了生物学的启发,因为生物的学习系统是由相互连接的神经元(neuron)组成的异常复杂的网络。而人工神经网络与此大体相似,它是由一系列简单单元相互密集连接构成,其中每一个单元有一定数量的实值输入(可能是其他单元的输出),并产生单一的实数值输出(可能成为其他很多单元的输入)。
实例:
接下来用一个很简单的例子简要说明一下神经网络的应用:
Pomerleau(1993)的ALVINN系统是ANN学习的一个典型实例,这个系统使用一个学习到的ANN
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/26456905
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)