数据挖掘学习笔记之人工神经网络(二)

举报
格图洛书 发表于 2021/12/30 22:47:20 2021/12/30
【摘要】 多层网络和反向传播算法 我们知道单个感知器仅能表示线性决策面。然而我们可以将许多的类似感知器的模型按照层次结构连接起来,这样就能表现出非线性决策的边界了,这也叫做多层感知器,重要的是怎么样学习多层感知器,这个问题有两个方面: 1、  要学习网络结构; 2、  要学习连接权值 对于一个给定的网络有一个相当简...

多层网络和反向传播算法

我们知道单个感知器仅能表示线性决策面。然而我们可以将许多的类似感知器的模型按照层次结构连接起来,这样就能表现出非线性决策的边界了,这也叫做多层感知器,重要的是怎么样学习多层感知器,这个问题有两个方面:

1、  要学习网络结构;

2、  要学习连接权值

对于一个给定的网络有一个相当简单的算法来决定权值,这个算法叫做反向传播算法。反向传播算法所学习的多层网络能够表示种类繁多的非线性曲面。

可微阈值函数

现在我们来学习一点反向传播算法的基础,这个主要就是sigmoid函数以及可微阈值单元。

应该使用什么类型的单元来作为构建多层网络的基础?起初我们可以尝试选择前面讨论的线性单元,因为我们已经

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/26456997

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。