Hadoop-2.2.0学习之三YARN简介

举报
格图洛书 发表于 2021/12/30 02:47:01 2021/12/30
【摘要】 MapReduce在hadoop-0.23版本中进行了完全的检查修改,并发展为了现在称之为的MapReduce2.0(MRv2)或者YARN。YARN的基本想法是将JobTracker的两个主要功能资源管理和作业调度监控分开为独立的后台进程,目标是拥有一个全局ResourceManager (RM)和每个应用程序一个的Applicati...

MapReduce在hadoop-0.23版本中进行了完全的检查修改,并发展为了现在称之为的MapReduce2.0(MRv2)或者YARN。YARN的基本想法是将JobTracker的两个主要功能资源管理和作业调度监控分开为独立的后台进程,目标是拥有一个全局ResourceManager (RM)和每个应用程序一个的ApplicationMaster (AM)。一个应用程序或者是从经典MapReduce作业角度来看的一个单独作业,或者是这种作业的一个有向无环图(DAG)

ResourceManager和从节点的NodeManager(NM)组成了数据计算框架,ResourceManager是协调系统中所有应用程序之间资源的最终权威。事实上,ApplicationMaster是框架特定的类库,任务是从ResourceManager协调资源以及同NodeManager一起工作进行任务的执行和监控。下图为YARN的架构示意图。


ResourceManager有两个主要的组件:调度器(Scheduler)和应用程序管理器(ApplicationsManager)。

调度器负责在各种运行的,受制于计算机容量、队列等约束条件的应用程序之间分配资源。调度器在某种意义上是纯的调度器,因为它不监控或者跟踪应用程序的状态,并且不提供重启失败任务的保证,无论任务失败是由于应用程序还是硬件问题。调度器在应用程序对资源的需求基础上执行调度功能,这样做是基于resourceContainer 的抽象概念,resourceContainer 整合了内存、CPU、硬盘、网络等。在第一个版本中,resourceContainer 只包

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/25237699

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。