Scrapy实战篇(二)之爬取链家网成交房源数据(下)
在上一小节中,我们已经提取到了房源的具体信息,这一节中,我们主要是对提取到的数据进行后续的处理,以及进行相关的设置。
数据处理
我们这里以把数据存储到mongo数据库为例。
编写pipelines.py文件
-
import pymongo
-
-
-
class MongoPipeline(object):
-
-
collection = 'lianjia_house' #数据库collection名称
-
-
def __init__(self, mongo_uri, mongo_db):
-
self.mongo_uri = mongo_uri
-
self.mongo_db = mongo_db
-
-
@classmethod
-
def from_crawler(cls,crawler):
-
return cls(
-
mongo_uri = crawler.settings.get('MONGO_URI'),
-
mongo_db = crawler.settings.get('MONGO_DB')
-
)
-
def open_spider(self,spider):
-
self.client = pymongo.MongoClient(self.mongo_uri)
-
self.db = self.client[self.mongo_db]
-
-
def close(self, spider):
-
self.client.close()
-
-
def process_item(self, item, spider):
-
table = self.db[self.collection]
-
data = dict(item)
-
table.insert_one(data)
-
return item
非常简单的几步,就实现了将数据保存到mongo数据库中,所以说mongo数据库还是非常好用的。
由于之前的学习篇中已经学习过数据的存储相关的内容,在这里就不多赘述。
设置随机User-Agent
这个内容在之前的学习篇中也已经学习过了,这里就直接拿过来用。
编写middlewares.py文件。
-
import scrapy
-
import random
-
from scrapy.downloadermiddlewares.useragent import UserAgentMiddleware
-
-
-
class MyUserAgentMiddleware(UserAgentMiddleware):
-
-
def __init__(self, agents):
-
self.agents = agents
-
-
@classmethod
-
def from_crawler(cls, crawler):
-
return cls(
-
agents=crawler.settings.get('USER_AGENTS')
-
)
-
-
def process_request(self, request, spider):
-
agent = random.choice(self.agents)
-
request.headers['User-Agent'] = agent
设置(settings)
最后一步就是在settings.py文件中,进行我们的设置和应用我们的相关的组件。
内容如下:
-
BOT_NAME = 'lianjia'
-
-
SPIDER_MODULES = ['lianjia.spiders']
-
NEWSPIDER_MODULE = 'lianjia.spiders'
-
-
ROBOTSTXT_OBEY = False
-
-
USER_AGENTS = [
-
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
-
"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)",
-
"Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
-
"Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)",
-
"Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)",
-
"Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)",
-
"Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)",
-
"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",
-
"Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6",
-
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1",
-
"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0",
-
"Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5",
-
"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6",
-
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
-
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20",
-
"Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52",
-
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11",
-
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER",
-
"Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)",
-
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)",
-
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 LBBROWSER",
-
"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)",
-
"Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)",
-
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
-
"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; 360SE)",
-
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
-
"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)",
-
"Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1",
-
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1",
-
"Mozilla/5.0 (iPad; U; CPU OS 4_2_1 like Mac OS X; zh-cn) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8C148 Safari/6533.18.5",
-
"Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:2.0b13pre) Gecko/20110307 Firefox/4.0b13pre",
-
"Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:16.0) Gecko/20100101 Firefox/16.0",
-
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
-
"Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10",
-
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
-
]
-
-
MONGO_URI = 'mongodb://localhost:27017'
-
MONGO_DB = "lianjia"
-
-
DOWNLOAD_DELAY = 2
-
-
DEFAULT_REQUEST_HEADERS = {
-
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
-
'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3',
-
'Connection':'keep-alive'
-
}
-
-
DOWNLOADER_MIDDLEWARES = {
-
'lianjia.middlewares.MyUserAgentMiddleware': 400,
-
}
-
-
ITEM_PIPELINES = {
-
'lianjia.pipelines.MongoPipeline': 300,
-
}
总结
由于我们爬取得数据量比较大,请求比较多,如果你直接运行的话,肯定是很快就会被封掉的,你可以选择设置ip代理,具体的设置方法你可以参照scrapy学习篇里面的设置ip代理,这里就不多演示,当然了,如果你想看一下效果的话,你可以选择只爬取某一个区的数据,比如鼓楼区。其效果如下面所示。
另外,你可以在你的项目根目录下创建一个run.py文件,里面添加如下的内容:
-
from scrapy import cmdline
-
cmdline.execute("scrapy crawl lianjia".split())
其中,lianjia
是你spider里面定义的名字,这样,你只需要使用python run.py
就可以运行这个项目了。
这里提醒一下,如果你不是着急获取这个数据的话,可以将设置里面的下载延迟设置的稍微大一些,一方面防止我们爬虫被办,另一方面以减轻对方服务器的压力。
github地址: https://github.com/cnkai/lianjia.git
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/80965407
- 点赞
- 收藏
- 关注作者
评论(0)