探索推荐引擎内部的秘密
“探索推荐引擎内部的秘密”系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用。同时在理论讲解的基础上,还会结合 Apache Mahout 介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法。本文作为这个系列的第一篇文章,将深入介绍推荐引擎的工作原理,和其中涉及的各种推荐机制,以及它们各自的优缺点和适用场景,帮助用户清楚的了解和快速构建适合自己的推荐引擎。
信息发现
如今已经进入了一个数据爆炸的时代,随着 Web 2.0 的发展, Web 已经变成数据分享的平台,那么,如何让人们在海量的数据中想要找到他们需要的信息将变得越来越难。
在这样的情形下,搜索引擎(Google,Bing,百度等等)成为大家快速找到目标信息的最好途径。在用户对自己需求相对明确的时候,用搜索引擎很方便的通过关键字搜索很快的找到自己需要的信息。但搜索引擎并不能完全满足用户对信息发现的需求,那是因为在很多情况下,用户其实并不明确自己的需要,或者他们的需求很难用简单的关键字来表述。又或者他们需要更加符合他们个人口味和喜好的结果,因此出现了推荐系统,与搜索引擎对应,大家也习惯称它为推荐引擎。
随着推荐引擎的出现,用户获取信息的方式从简单的目标明确的数据的搜索转换到更高级更符合人们使用习惯的信息发现。
如今,随着推荐技术的不断发展,推荐引擎已经在电子商务 (E-commerce,例如 Amazon,当当网 ) 和一些基于 social 的社会化站点 ( 包括音乐,电影和图书分享,例如豆瓣,Mtime 等 ) 都取得很大的成功。这也进一步的说
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/40818713
- 点赞
- 收藏
- 关注作者
评论(0)