增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)
1. 蒙特卡罗方法的基本思想
蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法。该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基础的方法。
一个简单的例子可以解释蒙特卡罗方法,假设我们需要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如积分)的复杂程度是成正比的。而采用蒙特卡罗方法是怎么计算的呢?首先你把图形放到一个已知面积的方框内,然后假想你有一些豆子,把豆子均匀地朝这个方框内撒,散好后数这个图形之中有多少颗豆子,再根据图形内外豆子的比例来计算面积。当你的豆子越小,撒的越多的时候,结果就越精确。
2. 增强学习中的蒙特卡罗方法
现在我们开始讲解增强学习中的蒙特卡罗方法,与上篇的DP不同的是,这里不需要对环境的完整知识。蒙特卡罗方法仅仅需要经验就可以求解最优策略,这些经验可以在线获得或者根据某种模拟机制获得。
要注意的是,我们仅将蒙特卡罗方法定义在episode task上,所谓的episode task就是指不管采取哪种策略π,都会在有限时间内到达终止状态并获得回报的任务。比如玩棋类游戏,在有限步数以后总能达到输赢或者平局的结果并获得相应回报。
那么什么是经验呢?经验其实就是训练样本。比如在初始状态s,遵循策略π,最终获得了总回报R,这就是一个样本。如果我们有许多这样的样本,就可以估计在状态s下,遵循策略π的期望回报,也就是状态值函数Vπ(s)了。蒙特卡罗方法就是依靠样本的平均回报来解决增强学习问题的。
尽管蒙特卡罗方法和动态规划方法存在诸多不同,但是蒙特卡罗方法借鉴了很多动态规划中的思想。在动态规划中我们首先进
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/85760888
- 点赞
- 收藏
- 关注作者
评论(0)