强化学习(四)用蒙特卡罗法(MC)求解
在强化学习(三)用动态规划(DP)求解中,我们讨论了用动态规划来求解强化学习预测问题和控制问题的方法。但是由于动态规划法需要在每一次回溯更新某一个状态的价值时,回溯到该状态的所有可能的后续状态。导致对于复杂问题计算量很大。同时很多时候,我们连环境的状态转化模型PP都无法知道,这时动态规划法根本没法使用。这时候我们如何求解强化学习问题呢?本文要讨论的蒙特卡罗(Monte-Calo, MC)就是一种可行的方法。
蒙特卡罗法这一篇对应Sutton书的第五章和UCL强化学习课程的第四讲部分,第五讲部分。
1. 不基于模型的强化学习问题定义
在动态规划法中,强化学习的两个问题是这样定义的:
预测问题,即给定强化学习的6个要素:状态集SS, 动作集AA, 模型状态转化概率矩阵PP, 即时奖励RR,衰减因子γγ, 给定策略ππ, 求解该策略的状态价值函数v(π)v(π)
控制问题,也就是求解最优的价值函数和策略。给定强化学习的5个要素:状态集SS, 动作集AA, 模型状态转化概率矩阵PP, 即时奖励RR,衰减因子γγ, 求解最优的状态价值函数v∗v∗和最优策略π∗π∗
可见, 模型状态转化概率矩阵PP始终是已知的,即MDP已知,对于这样的强化学习问题,我们一般称为基于模型的强化学习问题。
不过有很多强化学习问题,我们没有办法事先得到模型状态转化概率矩阵PP,这时如果仍然需要我们求解强化学习问题,那么这就是不基于模型的强化学习问题了。它的两个问题一般的定义是:
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/97892773
- 点赞
- 收藏
- 关注作者
评论(0)