强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)

举报
格图洛书 发表于 2021/12/30 00:12:09 2021/12/30
【摘要】 在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna。本文我们讨论另一种非常流行的集合基于模型与不基于模型的强化学习方法:基于模拟的搜索(Simulation Based Search)。     本篇主要参考了UCL强化学习课程的第八...

强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna。本文我们讨论另一种非常流行的集合基于模型与不基于模型的强化学习方法:基于模拟的搜索(Simulation Based Search)。

    本篇主要参考了UCL强化学习课程的第八讲,第九讲部分。

1. 基于模拟的搜索概述

    什么是基于模拟的搜索呢?当然主要是两个点:一个是模拟,一个是搜索。模拟我们在上一篇也讨论过,就是基于强化学习模型进行采样,得到样本数据。但是这是数据不是基于和环境交互获得的真实数据,所以是“模拟”。对于搜索,则是为了利用模拟的样本结果来帮我们计算到底应该采用什么样的动作,以实现我们的长期受益最大化。

    那么为什么要进行基于模拟的搜索呢?在这之前我们先看看最简单的前向搜索(forward search)。前向搜索算法从当前我们考虑的状态节点StSt开始考虑,怎么考虑呢?对该状态节点所有可能的动作进行扩展,建立一颗以StSt为根节点的搜索树,这个搜索树也是一个MDP,只是它是以当前状态为根节点,而不是以起始状态为根节点,所以也叫做sub-MDP。我们求解这个sub-MDP问题,然后得到StSt状态最应该采用的动作AtAt。前向搜索的sub-MDP如下图:

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/98057285

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。