深度神经网络(DNN)损失函数和激活函数的选择

举报
格图洛书 发表于 2021/12/30 00:39:36 2021/12/30
【摘要】   在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。里面使用的损失函数是均方差,而激活函数是Sigmoid。实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?下面我们就对DNN损失函数和激活函数的选择做一个总结。 1. 均方差损失函数+Sigmoid激活函数的...

  在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。里面使用的损失函数是均方差,而激活函数是Sigmoid。实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?下面我们就对DNN损失函数和激活函数的选择做一个总结。

1. 均方差损失函数+Sigmoid激活函数的问题

    在讲反向传播算法时,我们用均方差损失函数和Sigmoid激活函数做了实例,首先我们就来看看均方差+Sigmoid的组合有什么问题。

    首先我们回顾下Sigmoid激活函数的表达式为:

σ(z)=11+e−zσ(z)=11+e−z

    σ(z)σ(z)的函数图像如下:

    从图上可以看出,对于Sigmoid,当zz的取值越来越大后,函数曲线变得越来越平缓,意味着此时的导数σ′(z)σ′(z)也越来越小。同样的,当zz的取值越来越小时,也有这个问题。仅仅在zz取值为0附近时,导数σ′(z)σ′(z)的取值较大。

    在上篇讲的均方差+Sigmoid的反向传播算法中,每一层向前递推都要乘以

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/98173767

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。