循环神经网络(RNN)模型与前向反向传播算法
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系。今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域。
1. RNN概述
在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的。但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不一,比如基于时间的序列:一段段连续的语音,一段段连续的手写文字。这些序列比较长,且长度不一,比较难直接的拆分成一个个独立的样本来通过DNN/CNN进行训练。
而对于这类问题,RNN则比较的擅长。那么RNN是怎么做到的呢?RNN假设我们的样本是基于序列的。比如是从序列索引1到序列索引ττ的。对于这其中的任意序列索引号tt,它对应的输入是对应的样本序列中的x(t)x(t)。而模型在序列索引号tt位置的隐藏状态h(t)h(t),则由x(t)x(t)和在t−1t−1位置的隐藏状态h(t−1)h(t−1)共同决定。在任意序列索引号tt,我们也有对应的模型预测输出o(t)o(t)。通过预测输出o(t)o(t)和训练序列真实输出y(t)y(t),以及损失函数L(t)L(t),我们就可以用DNN类似的方法来训练模型,接着用来预测测试序列中的一些位置的输出。
下面我们来看看RNN的模型。
2. RNN模型
RNN模型有比较多的变种,这里介绍最主流的RNN模型结构如下:
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/98488871
- 点赞
- 收藏
- 关注作者
评论(0)