pandas.describe 输出参数解释
-
import pandas as pd
-
import numpy as np
-
-
dates=pd.date_range('20081001',periods=7)
-
df=pd.DataFrame(np.random.randn(7,4),index=dates,columns=list('ABCD'))
-
print("index is:")
-
print(df.index)
-
print("column is:")
-
print(df.columns)
-
print("value is:")
-
print(df.values)
-
print("-"*32)
-
print(df.describe())
D:\Programs\Python\Python36\python.exe D:/aaa/pandasdemo/pandas2.py
index is:
DatetimeIndex(['2008-10-01', '2008-10-02', '2008-10-03', '2008-10-04',
'2008-10-05', '2008-10-06', '2008-10-07'],
dtype='datetime64[ns]', freq='D')
column is:
Index(['A', 'B', 'C', 'D'], dtype='object')
value is:
[[ 0.63424428 1.10095283 -0.66181727 -0.65113561]
[-0.87622164 1.24320172 -2.20035782 0.50736403]
[ 2.52492648 0.16699796 0.35049536 -1.8868142 ]
[ 1.30422257 0.10991641 0.85137072 -1.40550629]
[-0.80097511 -0.1881843 -0.75235661 -0.89326946]
[-0.62392825 0.65573963 0.7682292 -1.15338121]
[-0.1981631 -0.36213939 -0.49770702 -1.39590736]]
--------------------------------
A B C D
count 7.000000 7.000000 7.000000 7.000000
mean 0.280586 0.389498 -0.306020 -0.982664
std 1.275754 0.623459 1.070486 0.767494
min -0.876222 -0.362139 -2.200358 -1.886814
25% -0.712452 -0.039134 -0.707087 -1.400707
50% -0.198163 0.166998 -0.497707 -1.153381
75% 0.969233 0.878346 0.559362 -0.772203
max 2.524926 1.243202 0.851371 0.507364
Process finished with exit code 0
注释:
对于数值数据,结果的索引将包括计数,平均值,标准差,最小值,最大值以及较低的百分位数和50。默认情况下,较低的百分位数为25,较高的百分位数为75.50百分位数与中位数相同。
文章来源: aaaedu.blog.csdn.net,作者:tea_year,版权归原作者所有,如需转载,请联系作者。
原文链接:aaaedu.blog.csdn.net/article/details/83210907
- 点赞
- 收藏
- 关注作者
评论(0)