Python代码实现-主成分分析(PCA)降维及故障诊断中的T2和SPE统计量Matplotlib出图|Python技能树征题

举报
府学路18号车神 发表于 2021/12/24 22:30:26 2021/12/24
【摘要】 PCA降维代码及T2和SPE统计量Matplotlib出图 PCA降维 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。 ...

PCA降维代码及T2和SPE统计量Matplotlib出图

PCA降维

PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。

在这里插入图片描述
在这里插入图片描述

T2的计算

在这里插入图片描述
基本原理见 这里

故障判断

如系统正常运行,则样本的T2值应该满足T2 < Tα ,反之,可认为出现故障。

SPE(Q统计量)的计算

在这里插入图片描述
基本原理见 这里

故障判断

如系统正常运行,则样本的SPE值应该满足SPE < Qα ,反之,可认为出现故障。

Python程序如下

下面是封装成function的块

可直接调用

传入你需要训练的数据集即可

注意数据集最好为 .xls 后缀

def PCA_x(train_file_name, test_file_name, num_name):

    train_data = pd.read_excel(train_file_name, sheet_name=num_name)    # 导入训练数据
    test_data = pd.read_excel(test_file_name, sheet_name=num_name)     # 导入测试数据
    # *****************使用pandas方法读取样本数据功能模块(结束)*********************
    m = train_data.shape[1];  # 获取数据表格的列数
    n = train_data.shape[0];  # 获取数据表格的行数
    # ******************数据标准化处理(开始)*********************
    S_mean = np.mean(train_data, axis=0)  # 健康数据矩阵的列均值
    S_mean = np.array(S_mean)  # 健康数据的列均值,narry数据类型
    S_var = np.std(train_data, ddof=1);  # 健康数据矩阵的列方差,默认ddof=0表示对正态分布变量的方差的最大似然估计,ddof=1提供了对无限总体样本的方差的无偏估计(与Matlab一致)
    S_var[S_var == 0.0] = 0.0000000000000001  # 将集合S_var中的0替换为0.0000000000000001
    S_var = np.array(S_var)  # 健康数据的列方差,narry数据类型
    train_data -= S_mean  # 求取矩阵X的均值
    train_data /= S_var  # 求取矩阵X的方差
    train_data = np.where(train_data < 4.0e+11, train_data, 0.0)  # 把标准化后的矩阵X中的0替换为0.0000000000000001
    X_new = train_data;  # 求得标准化处理后的矩阵X_new
    # ******************求矩阵Y的协方差矩阵Z*********************
    X_new = np.transpose(X_new);  # 对矩阵进行转秩操作
    Z = np.dot(X_new, train_data / (n - 1))  # 求取协方差矩阵Z
    # ******************计算协方差矩阵Z的特征值和特征向量*********************
    a, b = np.linalg.eig(Z)  ##特征值赋值给a,对应特征向量赋值给b
    lambda1 = sorted(a, reverse=True)  # 特征值从大到小排序
    lambda_i = [round(i, 3) for i in lambda1]  # 保留三位小数
    print('lambda特征值由大到小排列:', lambda_i)
    # 计算方差百分比
    sum_given = 0  # 设置初值为0
    sum_given = sum(lambda_i)
    variance_hud = []  # 设置存放方差百分比的矩阵
    for i in tqdm(range(m)):
        if i <= m:
            variance_hud.append(lambda_i[i] / sum_given)
        else:
            break
    variance_hud = [round(i, 3) for i in variance_hud]  # 保留三位小数
    print('方差百分比从大到小排序:', variance_hud)

    # 累计贡献率
    leiji_1 = []
    new_value = 0
    for i in tqdm(range(0, m)):
        if i <= m:
            new_value = new_value + variance_hud[i]
            leiji_1.append(new_value)
        else:
            break

    print('累计贡献率:', leiji_1)

    # ******************主元个数选取 *********************
    totalvar = 0   # 累计贡献率,初值0
    for i in tqdm(range(m)):
        totalvar = totalvar + lambda1[i] / sum(a)  # 累计贡献率,初值0
        if totalvar >= 0.85:
            k = i + 1  # 确定主元个数
            break  # 跳出for循环
    PCnum = k  # 选取的主元个数
    PC = np.eye(m, k)  # 定义一个矩阵,用于存放选取主元的特征向量
    for j in tqdm(range(k)):
        wt = a.tolist().index(lambda1[j])  # 查找排序完成的第j个特征值在没排序特征值里的位置。
        PC[:, j:j + 1] = b[:, wt:wt + 1]  # 提取的特征值对应的特征向量
    print('成分矩阵:', PC)
    print('贡献率85%以上的主元个数为:', k)

    df_cfjz = pd.DataFrame(PC)

    # ******************根据建模数据求取 T2 阈值限 *********************
    # ******************置信度 = (1-a)% =1-0.05%=95% *************
    F = f.ppf(1 - 0.05, k, n - 1)  # F分布临界值
    T2 = k * (n - 1) * F / (n - k)  # T2求取
    # ****************** 健康数据的 SPE 阈值限求解  *********************
    ST1 = 0  # 对应SPE公式中的角1初值
    ST2 = 0  # 对应SPE公式中的角2初值
    ST3 = 0  # 对应SPE公式中的角3初值
    for i in range(k - 1, m):
        ST1 = ST1 + lambda1[i]  # 对应SPE公式中的角1
        ST2 = ST2 + lambda1[i] * lambda1[i]  # 对应SPE公式中的角2
        ST3 = ST3 + lambda1[i] * lambda1[i] * lambda1[i]  # 对应SPE公式中的角3
    h0 = 1 - 2 * ST1 * ST3 / (3 * pow(ST2, 2))
    Ca = 1.6449
    SPE = ST1 * pow(Ca * pow(2 * ST2 * pow(h0, 2), 0.5) / ST1 + 1 + ST2 * h0 * (h0 - 1) / pow(ST1, 2),
                    1 / h0)  # 健康数据SPE计算
    # ******************测试样本数据*********************
    m1 = test_data.shape[1];  # 获取数据表格的列数
    n1 = test_data.shape[0];  # 获取数据表格的行数
    test_data = np.array(test_data)  # 将DataFrame数据烈性转化为ndarray类型,使得数据矩阵与Matlab操作一样。
    I = np.eye(m)  # 产生m*m的单位矩阵
    PC1 = np.transpose(PC)  # PC的转秩
    SPEa = np.arange(n1).reshape(1, n1)  # 定义测试数据的SPE矩阵,为正数矩阵
    SPEa = np.double(SPEa)  # 将正数矩阵,转化为双精度数据矩阵
    TT2a = np.arange(n1).reshape(1, n1)  # 定义测试数据的T2矩阵,为正数矩阵
    TT2a = np.double(TT2a)  # 将正数矩阵,转化为双精度数据矩阵
    DL = np.diag(lambda1[0:k])  # 特征值组成的对角矩阵
    DLi = np.linalg.inv(DL)  # 特征值组成的对角矩阵的逆矩阵
    # ******************绘制结果 *********************
    # mpl.rcParams['font.sans-serif'] = ['SimHei']  # 在图形中显示汉字
    for i in range(n1):
        xnew = (test_data[i, :] - S_mean) / S_var;  # 对应 Matlab程序:xnew=(Data2(i,1:m)-S_mean)./S_var;
        # 以下是实现Matlb程序:  err(1,i)=xnew*(eye(14)-PC*PC')*xnew';
        xnew1 = np.transpose(xnew)  # xnew的转秩
        PC1 = np.transpose(PC)  # PC的转秩
        XPC = np.dot(xnew, PC)  # 矩阵xnew与PC相乘
        XPCPC1 = np.dot(XPC, PC1)  # 矩阵XPCPC1相乘
        XXPCPC1 = xnew - XPCPC1  # 矩阵xnew减去XPCPC1
        SPEa[0, i] = np.dot(XXPCPC1, XXPCPC1)  # 矩阵XXPCPC1与XXPCPC1相乘
        XPi = np.dot(XPC, DLi)  # 矩阵XPCDLi相乘
        XPiP = np.dot(XPi, PC1)  # 矩阵XPi与PC1相乘
        TT2a[0, i] = np.dot(XPiP, xnew1)  # 矩阵XPiP与xnew1相乘
    Sampling = r_[0.:n1]  # 产生的序列值式0到n1
    SPE1 = SPE * ones((1, n1))  # 产生SPE数值相同的矩阵
    print('spe统计量的值:', SPEa)
    # df_spe = pd.DataFrame(SPEa.T)
    new_SPE = SPEa.T
    # df_spe.to_csv('SPE值.csv')     # 将SPE值保存成.csv
    T21 = T2 * ones((1, n1))  # 产生T2数值相同的矩阵
    print('t2统计量的值:', TT2a)
    # df_T2 = pd.DataFrame(TT2a.T)
    new_TT = TT2a.T
    # df_T2.to_csv('T2值.csv')       # 将T2值保存成.csv
    return new_SPE, new_TT, Sampling, TT2a, T21, SPEa, SPE1, n1, T2, SPE, m, variance_hud, leiji_1, df_cfjz

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120

上面程序会把T2和SPE的值保存在后台,且每次有超过阈值会打标签,以 label 保存结果在后台。

返回值有好几个,可用作其他用处,各取所需。

下面给出T2和SPE制图Python程序:

# 可视化T2SPE
def graph_TT_SPE(Sampling, TT2a, T21, SPEa, SPE1, n1, T2, SPE, layer):
    
    figure(1)  # 画的第一张图
    plot(Sampling, TT2a[0, :], '*-', Sampling, T21[0, :], 'r-')  # 绘制出测试数据SPEa的数据集合,和健康数据训练得到的SPE阈值限
    xlabel('sample points')  # 给X轴加标注
    ylabel('T^2')  # 给Y轴加标注
    legend(['T^2 value', 'T^2 limit'])  # 为绘制出的图形线条添加标签注明
    title("T^2 statistic" + layer)  # 绘制的图形主题为“SPE统计量”
    
    figure(2)
    plot(Sampling, SPEa[0, :], '*-', Sampling, SPE1[0, :], 'r-')  # 绘制出测试数据TT2a的数据集合,和健康数据训练得到的T2阈值限
    xlabel('sample points')  # 给X轴加标注
    ylabel('SPE')  # 给Y轴加标注
    legend(['SPE value', 'SPE limit'])  # 为绘制出的图形线条添加标签注明
    title("SPE statistic" + layer)  # 绘制的图形主题为“SPE统计量”
    show()  # 显示绘制的图形
 
    # 循环对象TT2a,SPEa,循环基线T2,SPE
    sum1 = 0
    for ij in range(n1):  # 对测试样本个数进行循环
        if ((TT2a[0, ij] <= T2) & (SPEa[0, ij] <= SPE)):  # 判断各个值是否小于阈值线
            TT2a[0, ij] = 0  # 将小于阈值线的样本点位置上的数置为0
            SPEa[0, ij] = 0  # 将小于阈值线的样本点位置上的数置为0
        else:
            TT2a[0, ij] = 1  # 将小于阈值线的样本点位置上的数置为1
            SPEa[0, ij] = 1  # 将小于阈值线的样本点位置上的数置为1
            sum1 += 1
            # print(i)#输出有故障的样本点
    print(sum1)
   
    d1 = pd.DataFrame(TT2a.T)
    d1['label'] = d1[0]
    d1.drop(0, axis=1, inplace=True)
    d1.to_csv('label.csv', index=False)
    print(d1.sum())
    print(SPEa)

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

上面 layer 是我为了主程序循环,每次出图能够传入不同层的数据,可自行修改。

运行效果如下:

T2结果

在这里插入图片描述

SPE结果

在这里插入图片描述

在第二部分制图,样式、颜色、图例、坐标等均可自行Matplot进行修改。

完整程序(功能很多分量很大):

主成分分析PCA降为及故障诊断T2和SPE统计量出图Python.py

另外还有个MATLABPCA程序:

超全PCA_ICA_SFA算法程序集合

比心♥️~

"

这个世界

有人不了解海

不知爱海

也有人了解海

不敢爱海

"

Reference:

(1):主成分分析(PCA)原理详解

https://blog.csdn.net/program_developer/article/details/80632779

(2):主成分分析(PCA)原理与故障诊断(SPE、T^2以及结合二者的综合指标)-MATLAB实现

https://blog.csdn.net/u013829973/article/details/77981701

(3):基于PCA的线性监督分类的故障诊断方法-T2与SPE统计量的计算

https://blog.csdn.net/And_ZJ/article/details/90576240

(4):3多变量统计故障诊断方法

https://wenku.baidu.com/view/b9ef2df9dd3383c4bb4cd2e0.html

(5):PCA故障诊断步骤

https://wenku.baidu.com/view/f8b6c51c08a1284ac9504339.html

文章来源: blog.csdn.net,作者:府学路18号车神,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/weixin_44333889/article/details/118410189

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。