Scipy expit 绘制函数图像
【摘要】 环境信息ModelArtsCodeLabConda-python3scipy 1.2.2 代码示例import scipy.specialimport numpy as npimport matplotlib.pyplot as plt%matplotlib inline# number = 100x = np.linspace(-10,10,100)xarray([-10. ...
环境信息
- ModelArts
- CodeLab
- Conda-python3
- scipy 1.2.2
- Conda-python3
- CodeLab
代码示例
import scipy.special
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# number = 100
x = np.linspace(-10,10,100)
x
array([-10. , -9.7979798 , -9.5959596 , -9.39393939,
-9.19191919, -8.98989899, -8.78787879, -8.58585859,
-8.38383838, -8.18181818, -7.97979798, -7.77777778,
-7.57575758, -7.37373737, -7.17171717, -6.96969697,
-6.76767677, -6.56565657, -6.36363636, -6.16161616,
-5.95959596, -5.75757576, -5.55555556, -5.35353535,
-5.15151515, -4.94949495, -4.74747475, -4.54545455,
-4.34343434, -4.14141414, -3.93939394, -3.73737374,
-3.53535354, -3.33333333, -3.13131313, -2.92929293,
-2.72727273, -2.52525253, -2.32323232, -2.12121212,
-1.91919192, -1.71717172, -1.51515152, -1.31313131,
-1.11111111, -0.90909091, -0.70707071, -0.50505051,
-0.3030303 , -0.1010101 , 0.1010101 , 0.3030303 ,
0.50505051, 0.70707071, 0.90909091, 1.11111111,
1.31313131, 1.51515152, 1.71717172, 1.91919192,
2.12121212, 2.32323232, 2.52525253, 2.72727273,
2.92929293, 3.13131313, 3.33333333, 3.53535354,
3.73737374, 3.93939394, 4.14141414, 4.34343434,
4.54545455, 4.74747475, 4.94949495, 5.15151515,
5.35353535, 5.55555556, 5.75757576, 5.95959596,
6.16161616, 6.36363636, 6.56565657, 6.76767677,
6.96969697, 7.17171717, 7.37373737, 7.57575758,
7.77777778, 7.97979798, 8.18181818, 8.38383838,
8.58585859, 8.78787879, 8.98989899, 9.19191919,
9.39393939, 9.5959596 , 9.7979798 , 10. ])
y = scipy.special.expit(x)
y
array([4.53978687e-05, 5.55606489e-05, 6.79983174e-05, 8.32200197e-05,
1.01848815e-04, 1.24647146e-04, 1.52547986e-04, 1.86692945e-04,
2.28478855e-04, 2.79614739e-04, 3.42191434e-04, 4.18766684e-04,
5.12469082e-04, 6.27124987e-04, 7.67413430e-04, 9.39055039e-04,
1.14904229e-03, 1.40591988e-03, 1.72012560e-03, 2.10440443e-03,
2.57431039e-03, 3.14881358e-03, 3.85103236e-03, 4.70911357e-03,
5.75728612e-03, 7.03711536e-03, 8.59898661e-03, 1.05038445e-02,
1.28252101e-02, 1.56514861e-02, 1.90885420e-02, 2.32625358e-02,
2.83228820e-02, 3.44451957e-02, 4.18339400e-02, 5.07243606e-02,
6.13831074e-02, 7.41067363e-02, 8.92170603e-02, 1.07052146e-01,
1.27951705e-01, 1.52235823e-01, 1.80176593e-01, 2.11963334e-01,
2.47663801e-01, 2.87185901e-01, 3.30246430e-01, 3.76354517e-01,
4.24816868e-01, 4.74768924e-01, 5.25231076e-01, 5.75183132e-01,
6.23645483e-01, 6.69753570e-01, 7.12814099e-01, 7.52336199e-01,
7.88036666e-01, 8.19823407e-01, 8.47764177e-01, 8.72048295e-01,
8.92947854e-01, 9.10782940e-01, 9.25893264e-01, 9.38616893e-01,
9.49275639e-01, 9.58166060e-01, 9.65554804e-01, 9.71677118e-01,
9.76737464e-01, 9.80911458e-01, 9.84348514e-01, 9.87174790e-01,
9.89496155e-01, 9.91401013e-01, 9.92962885e-01, 9.94242714e-01,
9.95290886e-01, 9.96148968e-01, 9.96851186e-01, 9.97425690e-01,
9.97895596e-01, 9.98279874e-01, 9.98594080e-01, 9.98850958e-01,
9.99060945e-01, 9.99232587e-01, 9.99372875e-01, 9.99487531e-01,
9.99581233e-01, 9.99657809e-01, 9.99720385e-01, 9.99771521e-01,
9.99813307e-01, 9.99847452e-01, 9.99875353e-01, 9.99898151e-01,
9.99916780e-01, 9.99932002e-01, 9.99944439e-01, 9.99954602e-01])
plt.grid()
plt.plot(x,y)
备注
- 欢迎各位同学一起来交流学习心得^_^
- 在线课程、沙箱实验、认证、大赛、论坛和直播,其中包含了许多优质的内容,推荐了解与学习。
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)