R语言实战应用精讲50篇(二十八)-R语言时空数据分析实战案例-数据处理及可视化

举报
格图洛书 发表于 2021/12/19 00:19:43 2021/12/19
【摘要】 1.数据整理 时空建模和预测通常涉及大量数据,这些数据以各种形式提供给用户,但通常以 CSV 文件或文本文件中的表格形式提供。通常会花费大量时间来加载数据并对其进行预处理,以便将它们转化为适合分析的形式。R 中有几个包可以帮助用户快速实现这些目标;在这里,我们专注于使用tidyverse工作流处理删失,它们包含特别适合所需数据操作技术...

1.数据整理

时空建模和预测通常涉及大量数据,这些数据以各种形式提供给用户,但通常以 CSV 文件或文本文件中的表格形式提供。通常会花费大量时间来加载数据并对其进行预处理,以便将它们转化为适合分析的形式。R 中有几个包可以帮助用户快速实现这些目标;在这里,我们专注于使用tidyverse工作流处理删失,它们包含特别适合所需数据操作技术的函数。我们首先加载所需的包,以及 STRbook(访问 https://spacetimewithr.org 获取有关如何安装 STRbook 的说明)


  
  1. library(tidyverse)
  2. library(STRbook)

作为运行示例,我们将考虑 NOAA 数据集,该数据集以表格中的文本形式提供给我们,并随包 STRbook 提供。有六个数据表:

  • Stationinfo.dat。该表包含 328 行(每个站点一列)和三列(站点 ID、纬度坐标和经度坐标),包含站点位置信息。

  • Times_1990.dat。该表包含 1461 行(1990 年 1 月 1 日至 1993 年 12 月 30 日之间的每一天)和包含数据时间戳的四列(Julian公立日期、年、月、日)。

  • Tmax_1990.dat。该表包含 1461 行(每个时间点一行)和 328 列(每个站点位置一列),其中包含所有最高温度数据,缺失值编码为 -9999。

  • Tmin_1990.dat。与 Tmax_1990.dat 相同,但包含最低温度数据。

  • TDP_1990.dat。与 Tmax_1990.dat 相同&#x

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/121899081

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。