学习笔记|AdaBoost的扩展之一——前向分步算法

举报
darkpard 发表于 2021/12/15 19:27:01 2021/12/15
【摘要】 考虑加法模型在给定训练数据及损失函数L(y,f(x))的条件下,学习加法模型f(x)成为经验风险极小化即损失函数极小化问题:通常这是一个复杂的优化问题。前向分步算法求解这一优化问题的想法是:因为学习的是加法模型,如果能够从前向后,每一步只学习一个基本函数及其系数,逐步逼近优化目标函数,那么就可以简化优化的复杂度。具体地,每步只需优化如下损失函数:前向分步算法:输出:加法模型f(x)。(2)对...

考虑加法模型

在给定训练数据及损失函数L(y,f(x))的条件下,学习加法模型f(x)成为经验风险极小化即损失函数极小化问题:

通常这是一个复杂的优化问题。前向分步算法求解这一优化问题的想法是:因为学习的是加法模型,如果能够从前向后,每一步只学习一个基本函数及其系数,逐步逼近优化目标函数,那么就可以简化优化的复杂度。具体地,每步只需优化如下损失函数:

前向分步算法:

输出:加法模型f(x)。

(2)对m=1,2,...,M

(a)极小化损失函数

(b)更新

(3)得到加法模型

参考文献

1.统计学习方法(第2版),李航著,清华大学出版社

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。