Flink从入门到精通100篇(二十二)- Flink应用实战案例:如何实现网络流控与反压机制

举报
格图洛书 发表于 2021/12/11 22:28:12 2021/12/11
2.6k+ 0 0
【摘要】 目录 Flink 流处理为什么需要网络流控? Flink V1.5 版之前网络流控介绍 Flink V1.5 版之前的反压策略存在的问题 Credit的反压策略实现原理,Credit是如何解决 Flink 1.5 之前的问题? 对比spark,都说flink延迟低,来一条处理一条,真是这样吗?其实Flin...

目录

  • Flink 流处理为什么需要网络流控?

  • Flink V1.5 版之前网络流控介绍

  • Flink V1.5 版之前的反压策略存在的问题

  • Credit的反压策略实现原理,Credit是如何解决 Flink 1.5 之前的问题?

  • 对比spark,都说flink延迟低,来一条处理一条,真是这样吗?其实Flink内部也有Buffer机制,Buffer机制具体是如何实现的?

  • Flink 如何在吞吐量和延迟之间做权衡?

Flink 流处理为什么需要网络流控?

分析一个简单的 Flink 流任务,下图是一个简单的Flink流任务执行图:任务首先从 Kafka 中读取数据、 map 算子对数据进行转换、keyBy 按照指定 key 对数据进行分区(相同 key 的数据经过 keyBy 后分到同一个 subtask 实例中),keyBy 后对数据接着进行 map 转换,然后使用 Sink 将数据输出到外部存储。

众所周知,在大数据处理中,无论是批处理还是流处理,单点处理的性能总是有限的,我们的单个 Job 一般会运行在多个节点上,多个节点共同配合来提升整个系统的处理性能。图中,任务被切分成 4 个可独立执行的 subtask( A0、A1、B0、B1),在数据处理过程中,就会存在 shuffle(数据传输&#

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/109986093

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

作者其他文章

评论(0

抱歉,系统识别当前为高风险访问,暂不支持该操作

    全部回复

    上滑加载中

    设置昵称

    在此一键设置昵称,即可参与社区互动!

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。