学习笔记|非线性支持向量分类机

举报
darkpard 发表于 2021/12/09 18:33:40 2021/12/09
【摘要】 利用核技巧,可以将线性分类的学习方法应用到非线性分类问题中去。将线性支持向量机扩展到非线性支持向量机,只需将线性支持向量机对偶形式中的内积换成核函数。非线性支持向量机定义: 从非线性分类训练集,通过核函数与软间隔最大化,或凸二次规划,学习得到的分类决策函数称为非线性支持向量机,K(x,z)是正定核函数。非线性支持向量机学习算法:输出:分类决策函数。(1)选取适当的核函数K(x,z)和适当的参...

利用核技巧,可以将线性分类的学习方法应用到非线性分类问题中去。将线性支持向量机扩展到非线性支持向量机,只需将线性支持向量机对偶形式中的内积换成核函数。

非线性支持向量机定义: 从非线性分类训练集,通过核函数与软间隔最大化,或凸二次规划,学习得到的分类决策函数

称为非线性支持向量机,K(x,z)是正定核函数。

非线性支持向量机学习算法:

输出:分类决策函数。

(1)选取适当的核函数K(x,z)和适当的参数C,构造并求解最优化问题

(3)构造决策函数:

当K(x,z)是正定核函数时,上述问题是凸二次规划问题,解是存在的。

参考文献

1.统计学习方法(第2版),李航著,清华大学出版社

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。