【愚公系列】2021年11月 C#版 数据结构与算法解析(红黑树)
【摘要】 红黑树定义:它或者是一颗空树,或者是具有一下性质的二叉查找树1):每个节点或是红的,或是黑的。2):根节点是黑的。3):每个叶节点(NIL)是黑的。(所有NULL结点称为叶子节点,且认为颜色为黑)4):如果一个节点是红的,则他的两个子节点是黑的。5):对每个节点,从该节点到其子孙节点的所有路径上包含相同数目的黑节点。红黑树用在关联数组、字典的实现上。需du要的空间zhi比散列表小。 任何键值...
红黑树定义:它或者是一颗空树,或者是具有一下性质的二叉查找树
1):每个节点或是红的,或是黑的。
2):根节点是黑的。
3):每个叶节点(NIL)是黑的。(所有NULL结点称为叶子节点,且认为颜色为黑)
4):如果一个节点是红的,则他的两个子节点是黑的。
5):对每个节点,从该节点到其子孙节点的所有路径上包含相同数目的黑节点。
红黑树用在关联数组、字典的实现上。需du要的空间zhi比散列表小。 任何键值对应,需要dao随机存储和键有序的情况都可以用。
class TreeNode<T>
{
public T Data { get; set; }
public TreeNode<T> LeftChild { get; set; }
public TreeNode<T> RightChild { get; set; }
public TreeNode<T> Parent { get; set; }
public int Color { get; set; }
public TreeNode(T data)
{
Data = data;
Parent = null;
LeftChild = null;
RightChild = null;
}
public TreeNode(T newData, TreeNode<T> parent)
{
Data = newData;
Parent = parent;
LeftChild = null;
RightChild = null;
}
}
internal class RedBlackTree<T> where T : IComparable<T>, IEquatable<T>, new()
{
public TreeNode<T> Root { get; private set; }
public int Size { get; private set; }
public RedBlackTree()
{
Root = null;
Size = 0;
}
private static TreeNode<T> Add(TreeNode<T> to, TreeNode<T> newNode)
{
if (newNode.Data.CompareTo(to.Data) < 0)
{
if (to.LeftChild != null) return Add(to.LeftChild, newNode);
newNode.LeftChild = null;
newNode.RightChild = null;
to.LeftChild = newNode;
newNode.Color = 1;
newNode.Parent = to;
return newNode;
}
if (to.RightChild != null) return Add(to.RightChild, newNode);
newNode.LeftChild = null;
newNode.RightChild = null;
to.RightChild = newNode;
newNode.Color = 1;
newNode.Parent = to;
return newNode;
}
private void LeftTurn(TreeNode<T> node)
{
if (node.RightChild == null) return;
var child = node.RightChild;
node.RightChild = child.LeftChild;
if (child.LeftChild != null) child.LeftChild.Parent = node;
child.Parent = node.Parent;
if (node.Parent == null) Root = child;
else
{
if (node == node.Parent.LeftChild)
node.Parent.LeftChild = child;
else
node.Parent.RightChild = child;
}
child.LeftChild = node;
node.Parent = child;
}
private void RightTurn(TreeNode<T> node)
{
if (node.LeftChild == null) return;
var child = node.LeftChild;
node.LeftChild = child.RightChild;
if (child.RightChild != null) child.RightChild.Parent = node;
child.Parent = node.Parent;
if (node.Parent == null) Root = child;
else
{
if (node == node.Parent.RightChild) node.Parent.RightChild = child;
else node.Parent.LeftChild = child;
}
child.RightChild = node;
node.Parent = child;
}
public void Insert(TreeNode<T> node)
{
if (Root == null)
{
Root = node;
Root.Color = 0;
Root.LeftChild = null;
Root.RightChild = null;
Root.Parent = null;
}
else
{
var addedNode = Add(Root, node);
while (addedNode != Root && addedNode.Parent.Color == 1)
{
if (addedNode.Parent == addedNode.Parent.Parent.LeftChild)
{
var y = addedNode.Parent.Parent.RightChild;
if (y != null && y.Color == 1)
{
addedNode.Parent.Color = 0;
y.Color = 0;
addedNode.Parent.Parent.Color = 1;
addedNode = addedNode.Parent.Parent;
}
else
{
if (addedNode == addedNode.Parent.RightChild)
{
addedNode = addedNode.Parent;
LeftTurn(addedNode);
}
addedNode.Parent.Color = 0;
addedNode.Parent.Parent.Color = 1;
RightTurn(addedNode.Parent.Parent);
}
}
else
{
var y = addedNode.Parent.Parent.LeftChild;
if (y != null && y.Color == 1)
{
addedNode.Parent.Color = 0;
y.Color = 0;
addedNode.Parent.Parent.Color = 1;
addedNode = addedNode.Parent.Parent;
}
else
{
if (addedNode == addedNode.Parent.Parent.LeftChild)
{
addedNode = addedNode.Parent;
RightTurn(addedNode);
}
addedNode.Parent.Color = 0;
addedNode.Parent.Parent.Color = 1;
LeftTurn(addedNode.Parent.Parent);
}
}
}
}
Root.Color = 0;
}
private static TreeNode<T> Min(TreeNode<T> node)
{
while (node.LeftChild != null) node = node.LeftChild;
return node;
}
private static TreeNode<T> Next(TreeNode<T> node)
{
if (node.RightChild != null) return Min(node.RightChild);
var y = node.Parent;
while (y != null && node == y.RightChild)
{
node = y;
y = y.Parent;
}
return y;
}
private void FixUp(TreeNode<T> node)
{
while (node != Root && node.Color == 0)
{
if (node == node.Parent.LeftChild)
{
var w = node.Parent.RightChild;
if (w.Color == 1)
{
w.Color = 0;
node.Parent.Color = 1;
LeftTurn(node.Parent);
w = node.Parent.RightChild;
}
if (w.LeftChild.Color == 0 && w.RightChild.Color == 0)
{
w.Color = 1;
node = node.Parent;
}
else
{
if (w.RightChild.Color == 0)
{
w.LeftChild.Color = 0;
w.Color = 1;
RightTurn(w);
w = node.Parent.RightChild;
}
w.Color = node.Parent.Color;
node.Parent.Color = 0;
w.RightChild.Color = 0;
LeftTurn(node.Parent);
node = Root;
}
}
else
{
var w = node.Parent.LeftChild;
if (w.Color == 1)
{
w.Color = 0;
node.Parent.Color = 1;
RightTurn(node.Parent);
w = node.Parent.LeftChild;
}
if (w.RightChild.Color == 0 && w.LeftChild.Color == 0)
{
w.Color = 1;
node = node.Parent;
}
else
{
if (w.LeftChild.Color == 0)
{
w.RightChild.Color = 0;
w.Color = 1;
LeftTurn(w);
w = node.Parent.LeftChild;
}
w.Color = node.Parent.Color;
node.Parent.Color = 0;
w.LeftChild.Color = 0;
RightTurn(node.Parent);
node = Root;
}
}
}
node.Color = 0;
}
public void Delete(TreeNode<T> node)
{
TreeNode<T> y;
if (node.LeftChild == null || node.RightChild == null)
y = node;
else
y = Next(node);
var x = y.LeftChild ?? y.RightChild;
if (x == null)
{
node.Data = y.Data;
if (y.Parent == null) return;
if (y.Parent.LeftChild == y) y.Parent.LeftChild = null;
else y.Parent.RightChild = null;
return;
}
x.Parent = y.Parent;
if (y.Parent == null) Root = x;
else
{
if (y == y.Parent.LeftChild) y.Parent.LeftChild = x;
else y.Parent.RightChild = x;
}
if (y != node)
{
node.Data = y.Data;
}
if (y.Color == 0) FixUp(x);
}
private static TreeNode<T> SearchInSubTree(TreeNode<T> topNode, T data)
{
if (data.Equals(topNode.Data))
return topNode;
if (data.CompareTo(topNode.Data) < 0 && topNode.LeftChild != null)
return SearchInSubTree(topNode.LeftChild, data);
if (data.CompareTo(topNode.Data) > 0 && topNode.RightChild != null)
return SearchInSubTree(topNode.RightChild, data);
return null;
}
public bool Search(T data)
{
return SearchInSubTree(Root, data) != null;
}
public TreeNode<T> SearchNode(T data)
{
return SearchInSubTree(Root, data);
}
public IEnumerator<T> GetEnumerator()
{
if (Root == null)
yield break;
var current = Min(Root);
yield return current.Data;
while (Next(current) != null)
{
current = Next(current);
yield return current.Data;
}
}
public IEnumerator<TreeNode<T>> DfsEnum()
{
var verts = new Stack<TreeNode<T>>();
if (Root == null)
yield break;
verts.Push(Root);
var previous = 0;
while (verts.Count != 0)
{
var current = verts.Peek();
if (current.LeftChild == null && current.RightChild == null)
{
verts.Pop();
yield return current;
if (current.Parent != null)
previous = current == current.Parent.LeftChild ? 1 : 2;
else
yield break;
continue;
}
switch (previous)
{
case 0:
if (current.LeftChild == null)
{
previous = 1;
continue;
}
verts.Push(current.LeftChild);
previous = 0;
break;
case 1:
if (current.RightChild == null)
{
verts.Pop();
yield return current;
if (current.Parent != null)
{
previous = current == current.Parent.LeftChild ? 1 : 2;
continue;
}
yield break;
}
verts.Push(current.RightChild);
previous = 0;
break;
case 2:
verts.Pop();
yield return current;
if (current.Parent != null)
previous = current == current.Parent.LeftChild ? 1 : 2;
else
yield break;
break;
}
}
}
public IEnumerator<TreeNode<T>> BfsEnum()
{
var verts = new Queue<TreeNode<T>>();
verts.Enqueue(Root);
while (verts.Count != 0)
{
var current = verts.Dequeue();
yield return current;
if (current.LeftChild != null)
verts.Enqueue(current.LeftChild);
if (current.RightChild != null)
verts.Enqueue(current.RightChild);
}
}
}
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)