【愚公系列】2021年11月 C#版 数据结构与算法解析(计数排序)
【摘要】 1、计数排序(Counting Sort)计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。1.1 算法描述找出待排序的数组中最大和最小的元素;统计数组中每个值为i的元素出现的次数,存入数组C的第i项;对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);反向填充...
1、计数排序(Counting Sort)
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
1.1 算法描述
- 找出待排序的数组中最大和最小的元素;
- 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
- 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
- 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
1.2 动图演示
1.3 代码实现
/// <summary>
/// 计数排序
/// </summary>
public class Program {
public static void Main(string[] args) {
int[] array = { 43, 69, 11, 72, 28, 21, 56, 80, 48, 94, 32, 8 };
CountingSort(array);
ShowSord(array);
Console.ReadKey();
}
private static void ShowSord(int[] array) {
foreach (var num in array) {
Console.Write($"{num} ");
}
Console.WriteLine();
}
public static void CountingSort(int[] array) {
if (array.Length == 0) return;
int min = array[0];
int max = min;
foreach (int number in array) {
if (number > max) {
max = number;
}
else if (number < min) {
min = number;
}
}
int[] counting = new int[max - min + 1];
for (int i = 0; i < array.Length; i++) {
counting[array[i] - min] += 1;
}
int index = -1;
for (int i = 0; i < counting.Length; i++) {
for (int j = 0; j < counting[i]; j++) {
index++;
array[index] = i + min;
}
}
}
}
1.4 算法分析
计数排序是一个稳定的排序算法。当输入的元素是 n 个 0到 k 之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k),其排序速度快于任何比较排序算法。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法。
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)