深度学习核心技术精讲100篇(十三)-线性可分支持向量机中KKT最有条件理解

举报
格图洛书 发表于 2021/11/18 23:51:47 2021/11/18
【摘要】 前言 KKT最优化条件是Karush[1939],以及Kuhn和Tucker[1951]先后独立发表出來的。这组最优化条件在Kuhn和Tucker发表之后才逐渐受到重视,因此许多情况下只记载成库恩塔克条件(Kuhn-Tucker conditions) 库恩塔克条件(Kuhn-Tucker conditions)是非线性规划领域里最...

前言

KKT最优化条件是Karush[1939],以及Kuhn和Tucker[1951]先后独立发表出來的。这组最优化条件在Kuhn和Tucker发表之后才逐渐受到重视,因此许多情况下只记载成库恩塔克条件(Kuhn-Tucker conditions)

库恩塔克条件(Kuhn-Tucker conditions)是非线性规划领域里最重要的理论成果之一,是确定某点为极值点的必要条件。如果所讨论的规划是凸规划,那么库恩-塔克条件也是充分条件。

本文不对数学公式进行详细推导,而是从直观上对KKT条件进行理解。当然KKT条件与拉格朗日乘子是相关联的,看完本文后,可以参阅相关资料。

无约束优化问题的极值(函数的最大值/最小值)通常发生在斜率为零的点上。

 

因此,为了找到极值,我们只需要搜索斜率为零的点。 我们可以用很好的数学形式表达这个属性。

如果 x* 是无约束优化问题的极值, 那么

▽f(x*)=0

等式约束的优化问题

如果x*是等式约束的优化问题的极值, 那么

▽f(x*)=λ×▽g(x*)

g(x*)=0

不等式约束的优化问题

如果x*是不等式约束的优化问题的极值, 那么,

KKT条件:

原可行性:g(x*)≤0对偶可行性: α≥0互补松弛条件:αg(x*)=0拉格朗日

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/107221452

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。