来个不冷的知识,我的研究究竟需要多大的样本量?

举报
格图洛书 发表于 2021/11/19 00:12:34 2021/11/19
【摘要】 前言 我的研究需要多大样本量?我的研究样本量已经有了,有多大概率可以得出有统计学意义的统计结果(这个样本量值得去做研究吗)?这些问题都可以通过功效分析(Power Analysis)来解决。 要进行功效分析,先要了解一下分析中涉及4个统计量:样本量(Sample Size)、效应值(Effect Size)、显著水准(Alpha)、...

前言

我的研究需要多大样本量?我的研究样本量已经有了,有多大概率可以得出有统计学意义的统计结果(这个样本量值得去做研究吗)?这些问题都可以通过功效分析(Power Analysis)来解决。

要进行功效分析,先要了解一下分析中涉及4个统计量:样本量(Sample Size)、效应值(Effect Size)、显著水准(Alpha)、功效(Power),知其三个可推断另外一个。

效应值是量化现象强度的数值,在不同的统计方法中统计量会不同。

假设检验采用的是小概率反证法思想,根据P值得出的推断结论具有概率性,在得出结论的同时,就冒着犯一定错误的风险,注意区别Ⅰ型错误和Ⅱ型错误。

图片

Ⅰ型错误是拒绝了实际上成立的H0,是一种“弃真”行为,显著水平(检验水平)α实际上就是预先规定的犯Ⅰ型错误的最大概率,常取值0.05、0.01,Ⅰ型错误也用α表示,α可以取单尾也可以取双尾。如α=0.05,当H0实际成立却通过假设检验拒绝了H0时,理论上100次试验有5次会发生这种错误。医学上的假阳性、误诊便属于此类错误。Ⅱ型错误是没有拒绝(“接受”)实际上不成立的H0ÿ

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/115296178

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。