纯干货!文字识别在高德地图数据生产中的演进
前言
丰富准确的地图数据大大提升了我们在使用高德地图出行的体验。相比于传统的地图数据采集和制作,高德地图大量采用了图像识别技术来进行数据的自动化生产,而其中场景文字识别技术占据了重要位置。商家招牌上的艺术字、LOGO五花八门,文字背景复杂或被遮挡,拍摄的图像质量差,如此复杂的场景下,如何解决文字识别技术全、准、快的问题?本文分享文字识别技术在高德地图数据生产中的演进与实践,介绍了文字识别自研算法的主要发展历程和框架,以及未来的发展和挑战。
一 背景
作为一个DAU过亿的国民级软件,高德地图每天为用户提供海量的查询、定位和导航服务。地图数据的丰富性和准确性决定了用户体验。传统的地图数据的采集和制作过程,是在数据采集设备实地采集的基础上,再对采集资料进行人工编辑和上线。这样的模式下,数据更新慢、加工成本高。为解决这一问题,高德地图采用图像识别技术从采集资料中直接识别地图数据的各项要素,实现用机器代替人工进行数据的自动化生产。通过对现实世界高频的数据采集,运用图像算法能力,在海量的采集图片库中自动检测识别出各项地图要素的内容和位置,构建出实时更新的基础地图数据。而基础地图数据中最为重要的是POI(Point of Interest)和道路数据,这两种数据可以构建出高德地图的底图,从而承载用户的行为与商家的动态数据。
图像识别能力决定了数据自动化生产的效率,其中场景文字识别技术占据了重要位置。不同采集设备的图像信息都需要通过场景文字识别(Scene Text Recognition,STR)获得文字信息。这要求我们致力于解决场景文字识别技术全、准、快的问题。在POI业务场景中,识别算法不仅需要尽可能多的识别街边新开商铺的文字信息&#
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/108389388
- 点赞
- 收藏
- 关注作者
评论(0)