深度解析算法优化内部机制:为什么机器学习算法难以优化?
【摘要】
前言
以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟!
MATLAB-30天带你从入门到精通
MATLAB深入理解高级教程(附源码)
tableau可视化数据分析高级教程
在机器学习中,损失的线性组合无处不在。虽然它们带有一些陷阱,但仍然被广泛用作标准方法。这些线性组合常常让算...
前言
以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟!
在机器学习中,损失的线性组合无处不在。虽然它们带有一些陷阱,但仍然被广泛用作标准方法。这些线性组合常常让算法难以调整。
在本文中,提出了以下论点:
-
机器学习中的许多问题应该被视为多目标问题,但目前并非如此;
-
「1」中的问题导致这些机器学习算法的超参数难以调整;
-
检测这些问题何时发生几乎是不可能的,因此很难解决这些问题。
有一些方法可以轻微缓解这些问题,并且不需要代码。
梯度下降被视为解决所有问题
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/119386388
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)