matlab从入门到精通-常用的几种缺失值处理方法

举报
格图洛书 发表于 2021/11/18 23:51:50 2021/11/18
【摘要】 前言 不论是自己爬虫获取的还是从公开数据源上获取的数据集,都不能保证数据集是完全准确的,难免会有一些缺失值。而以这样数据集为基础进行建模或者数据分析时,缺失值会对结果产生一定的影响,所以提前处理缺失值是十分必要的。 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你...

前言

不论是自己爬虫获取的还是从公开数据源上获取的数据集,都不能保证数据集是完全准确的,难免会有一些缺失值。而以这样数据集为基础进行建模或者数据分析时,缺失值会对结果产生一定的影响,所以提前处理缺失值是十分必要的。

以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟!

MATLAB-30天带你从入门到精通

MATLAB深入理解高级教程(附源码)

tableau可视化数据分析高级教程

对于缺失值的处理大致可分为以下三方面:

  • 不处理

  • 删除含有缺失值的样本

  • 填充缺失值

不处理应该是效果最差的了,删除虽然可以有效处理缺失值,但是会损伤数据集,好不容易统计的数据因为一个特征的缺失说删就删实在说不过去。填充缺失值应该是最常用且有效的处理方式了,下面介绍四种处理缺失值的常用Tips。

我自己构建了一个简易的含有缺失值的DataFrame,所有操作都基于这个数据集进行。

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/118102340

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。