R语言应用实战-基于R语言的判别分析:fisher判别法,距离判别法以及Bayers判别法(附源代码)
【摘要】
前言
判别分析(Discriminat Analysis)是多变量统计分析中用于判别样本所属类型的一种统计分析法。它所要解决的问题是在一些已知研究对象用某种方法已经分成若干类的情况下确定新的样本属于已知类别的哪一类。判别分析在处理问题时,通常要给出一个衡量新样品与各已知类型接近程度的描述统计模型即判别函数,同时也指定一种判别规则,借以...
前言
判别分析(Discriminat Analysis)是多变量统计分析中用于判别样本所属类型的一种统计分析法。它所要解决的问题是在一些已知研究对象用某种方法已经分成若干类的情况下确定新的样本属于已知类别的哪一类。判别分析在处理问题时,通常要给出一个衡量新样品与各已知类型接近程度的描述统计模型即判别函数,同时也指定一种判别规则,借以判定新的样本归属。
以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟!
判别分析的种类主要分为确定型判别:Fisher判别法(1) 线性型 (2)距离型(3)非线性型 还有一类是统计型判别:Bayers 判别法(1)概率型 (2)损失型
一 .Fisher 线性判别函数
两个总体中抽取具有p个指标的样品观测数据,借助于方差分析的思想构造一个线性判别函数:
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/119884531
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)