深度学习核心技术精讲100篇(七十五)-集成学习
【摘要】
前言
在解决分类问题时,假如分类模型不够强大,对样本的分类结果就不会很理想。这时如果我们多找一些分类模型,让它们一起做决策,模型强度会不会高一点呢?
集成学习就是把多种分类器按策略组合起来,并根据所有分类器的分类结果做出最后的判断。
如下图,三种分类器的分类结果都有一点点错误,如果把三类组合在一起就可以完美地把所有形状都区...
前言
在解决分类问题时,假如分类模型不够强大,对样本的分类结果就不会很理想。这时如果我们多找一些分类模型,让它们一起做决策,模型强度会不会高一点呢?
集成学习就是把多种分类器按策略组合起来,并根据所有分类器的分类结果做出最后的判断。
如下图,三种分类器的分类结果都有一点点错误,如果把三类组合在一起就可以完美地把所有形状都区分开,而且分割曲线也较为平滑。
集成学习属于监督学习中的分类问题,分为boosting和bagging两大类。
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/108404186
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)