一文搞懂Python装饰器
一、前言
本不打算专门写文来讲装饰器的,但有不少粉丝问到了,自己查阅了一些网上的装饰器教程,发现讲的通俗易懂的不多,也有不少照搬的文章。所以我这里专门来讲一讲它。
个人在用的人工智能学习网站推荐给大家:captainai
二、举例说明
假如我们需要对每个函数方法的执行时间做记录,想知道执行一个函数花费了多长时间。
现在先不用装饰器来写,在函数方法体内的开始和结尾各加一个当前时间的输出,然后print打印他们的差值:
import time
import datetime
def test():
start_time = datetime.datetime.now()
for i in range(3):
time.sleep(1)
end_time = datetime.datetime.now()
print('执行结束,执行时间为:', end_time - start_time)
test()
输出结果
执行结束,执行时间为: 0:00:03.025049
成功的实现了这个需求,但是出现了一个问题,如果有多个函数方法需要计算执行时间的话,那不就每个函数方法都要加这些代码吗?这样代码量不就大了,还很繁琐冗余吗?
这个时候装饰器就可以大显身手了!
我们可以通过写一个装饰器来实现这个需求,装饰器代码如下:
def take_up_time(func):
def run_time():
start_time = datetime.datetime.now()
func() # 执行被装饰的函数
end_time = datetime.datetime.now()
print('执行结束,执行时间为:', end_time - start_time)
return run_time
加入到需要记录执行时间的方法上
@take_up_time
def test():
for i in range(3):
time.sleep(1)
test()
输出结果
执行结束,执行时间为: 0:00:03.035180
这样就算需要统计多个方法的执行时间,我们只需要在对应函数方法上方加入该装饰器就能实现了,是不是简单多了!
Python语法糖@定义了装饰器,Python装饰器是基于闭包原理对已存在的函数增加额外的功能的设计模式,使得代码简洁且易于维护。
三、装饰器详解
上述例子的装饰器会不会感觉跟其他地方看到的有些许不一样,它们写的装饰器参数都带有*args
,**kwargs
,类似下面这样的:
def log(func):
def warp(*args, **kwargs):
print("准备开始了")
#对于这个例子,这里代码可理解为:result=add(1,7)
result = func(*args, **kwargs)
print("马上结束了")
return result
return warp
@log
def add(a, b):
return a + b
print('计算结果为:', add(1, 7))
输出结果
准备开始了
马上结束了
计算结果为: 8
带了这些参数的和之前的举例有什么区别呢?下面为你讲解:
带了*args
,**kwargs
参数用于获取传递给方法add的参数,上面的add(1,7)
中的1和7在装饰器中进行了获取,然后原封不动的将参数传递给被装饰的函数result = func(*args, **kwargs)
,现在我们把装饰器中将传递的参数打印出来:
def log(func):
def warp(*args, **kwargs):
print('传递的参数为:',args)
result = func(*args, **kwargs)
print("马上结束了")
return result
return warp
装饰器输出结果
传递的参数为 (1, 7)
马上结束了
有没有发现上述*args
就把传递的参数(1,7)涵盖了,好像跟**kwargs
没什么关系。确实是这样的。对于上面的代码确实与**kwargs
无关,甚至我们可以去掉**kwargs
这样写:
def log(func):
def warp(*args):
print('传递的参数为:',args)
result = func(*args)
print("马上结束了")
return result
return warp
哪种情况需要**kwargs
呢?
当你的参数是默认值参数时,类似下面的代码,c
就是一个默认值参数 (如果调用函数的时候未指定c
的值则c=0
,不然则等于指定的值):
def log(func):
def warp(*args, **kwargs):
print('传递的参数为:',args,kwargs)
result = func(*args, **kwargs)
print("马上结束了")
return result
return warp
@log
def add(a, b,c=0): # 未传递参数C的值时,默认等于0
return a + b+c
print('计算结果为:', add(1, 7,c=1)) # 未传递参数C的值时,默认等于0
输出结果
传递的参数为: (1, 7) {'c': 1}
马上结束了
计算结果为: 9
通过打印我们发现,c
参数的值被放入到kwargs
中了。如果我们去掉**kwargs
的话,再执行上面的代码就会报错:
def log(func):
def warp(*args):
print('传递的参数为:',args)
result = func(*args)
print("马上结束了")
return result
return warp
@log
def add(a, b,c=0):
return a + b+c
print('计算结果为:', add(1, 7, c=1))
输出结果
另外我们还可直接对装饰器进行参数的传递:
def log(value):
def decorator(func):
print('传递给装饰器的值为:',value) # 会打印直接传递给装饰器的值
def warp(*args, **kwargs):
print('传递的参数为:', args, kwargs)
result = func(*args, **kwargs)
return result
return warp
return decorator
@log(123) # 传递给装饰器的值
def add(a, b, c=0): # 未传递参数C的值时,默认等于0
return a + b + c
print(add(7, 1))
输出结果
传递给装饰器的值为: 123
传递的参数为: (1, 7) {}
计算结果为: 8
当然,装饰器同样也可以被装饰,因为它本质上就是一个函数:
def log2(func):
def warp(*args, **kwargs):
print("准备开始了2")
result = func(*args, **kwargs)
print("马上结束了2")
return result
return warp
def log(func):
def warp(*args, **kwargs):
print("准备开始了1")
result = func(*args, **kwargs)
print("马上结束了1")
return result
return warp
@log
@log2
def add(a, b):
return a + b
print('计算结果为:', add(1, 7))
输出结果
准备开始了1
准备开始了2
马上结束了2
马上结束了1
计算结果为: 8
四、类装饰器
Python中的类对象是不可被调用的,但通过魔术方法__call__
就可以将类变为一个函数,从而实现装饰器的功能,比如最开始我们记录函数执行的例子,通过类装饰器就可以这样写:
class TakeUpTime:
def __init__(self, func):
self.func = func
# 对于该例子,*args, **kwargs可以去掉
def __call__(self, *args, **kwargs):
start_time = datetime.datetime.now()
self.func()
end_time = datetime.datetime.now()
print('执行结束,执行时间为:', end_time - start_time)
@TakeUpTime
def test():
for i in range(3):
time.sleep(1)
test()
五、总结
装饰器的应用场景其实很常见,我们常见的判断用户是否登录(token校验的判断)、用户是否有访问权限很多都是使用装饰器来判断的,在DRF(django restframework)中的@api_view
、@permission_classes
就是对请求方法和用户权限的校验:
完全掌握装饰器相对来说有点难度,需要花一些时间,但这也是必须掌握的python技能。
- 点赞
- 收藏
- 关注作者
评论(0)