蚁群算法详解——从通俗解释到代码复现
蚁群算法概述
首相用通俗的话来解释一下什么叫蚁群算法,单个蚂蚁的智能度并没有很高,蚂蚁是靠信息素浓度来进行选择走哪一条路的,假如说现在有三只蚂蚁出发寻找食物,第一只回来的由于在起始点经过了两次,信息素浓度固然很高,所以窝里的蚂蚁按照它的路线走,这样一来,这条路线的信息素浓度越来越高,当然,也会有极少数的蚂蚁没有按照这条路线走。
模拟蚂蚁觅食行为设计的算法。讲蚂蚁群觅食的特点抽象出来转化成数学描述。
• 蚁群算法(Ant Colony Algorithm, ACA)由Marco Dorigo于1992年在他的博士论文中首次提出。
• 蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。信息素浓度的大小表征路径的远近,信息素浓度越高,表示对应的路径距离越短。
• 通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放 一定量的信息素,以增强该条路径上的信息素浓度,这样,会形成一个正反馈
• 生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。
• 将蚁群算法应用于解决优化问题,其基本思路为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短 的路径上累积的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。
类比GA(遗传算法)的交叉、选择、变异,PSO(粒子群算法)的个体、群体极值优化,蚁群算法也有自己的优化策略:正反馈的信息机制、信息素浓度的更新、蚂蚁对能够访问的路径的筛选。
ACA算法的数学原理
关于蚁群算法中释放信息素的特点,定义了三种模型:
第一种模型假设信息素总量一定。信息素浓度和经过路径的长度成反比。
第二种模型中不使用经过的总路径,而仅仅使用相邻城市的路径长度。
第三种模型更简单,不管距离长短,释放的信息素都一样。
本文下面设计的MATLAB程序,以第一种模型为例。
蚁群算法步骤
ACA算法特点
• 采用正反馈机制,使得搜索过程不断收敛,最终逼近于最优解;
• 每个个体可以通过释放信息素来改变周围的环境,且每个个体能够感知周围环境的实时变化,个体间通过环境(信息素)进行间接地通讯。对比之下,粒子群优化算法中采用局部最优解、全局最优解的广播来实现通讯。
• 搜索过程采用分布式计算方式,多个个体同时进行并行计算,大大提高了算法的计算能力和运行效率;
• 启发式的率搜索方式,不容易陷入局部最优,易于寻找到全局最优解。
ACA中也采用轮盘赌法,和遗传算法中的启发方法一样,即选择最大的概率那个选项继续前进。
补充:启发式算法
现代启发式算法在优化机制方面存在一定的差异,但在优化流程上却具有较大的相似性,均是一种“邻域搜索”结构。算法都是从一个(一组)初始解出发,在算法的关键参数的控制下通过邻域函数产生若干邻域解,按接受准则(确定性、概率性或混沌方式)更新当前状态,而后按关键参数修改准则调整关键参数。如此重复上述搜索步骤直到满足算法的收敛准则,最终得到问题的优化结果。神经网络、禁忌搜索、模拟退火、和ACA,他们都是启发式的搜索方法,共同的基本要素:(1)随机初始可行解;(2)给定一个评价函数(常常与目标函数值有关);(3)邻域,产生新的可行解;(4)选择和接受解得准则;(5)终止准则。
没有启发的算法就是随机搜索的算法,例如遗传算法。后面的博文中会针对这个问题细讲。
旅行商问题(TSP)
• Traveling Salesman Problem, TSP 是一个非常经典的问题
• 在N个城市中各经历一次后再回到出发点,使所经过的路程最短。
• 若不考虑方向性和周期性,在给定N的条件下,可能存在的闭合路径可达到1/2*N!数量级。当N较大时,枚举法的计算量之大难以想象。
• TSP问题经常被视为验证优化算法性能的一个“金标准”。
ACA的matlab实现
%% I. 清空环境变量
clear all
clc
%% II. 导入数据
load citys_data.mat
%% III. 计算城市间相互距离
n = size(citys,1);
D = zeros(n,n);
for i = 1:n
for j = 1:n
if i ~= j
D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
else
D(i,j) = 1e-4; %如果是0会导致矩阵对角线都是0 导致启发函数无穷大 因此取个很小的值
end
end
end
%% IV. 初始化参数
m = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.1; % 信息素挥发因子
Q = 1; % 常系数
Eta = 1./D; % 启发函数
Tau = ones(n,n); % 信息素矩阵
Table = zeros(m,n); % 路径记录表,每一行代表一个蚂蚁走过的路径
iter = 1; % 迭代次数初值
iter_max = 200; % 最大迭代次数
Route_best = zeros(iter_max,n); % 各代最佳路径
Length_best = zeros(iter_max,1); % 各代最佳路径的长度
Length_ave = zeros(iter_max,1); % 各代路径的平均长度
%% V. 迭代寻找最佳路径
while iter <= iter_max
% 随机产生各个蚂蚁的起点城市
start = zeros(m,1);
for i = 1:m
temp = randperm(n);
start(i) = temp(1);
end
Table(:,1) = start;
citys_index = 1:n;
% 逐个蚂蚁路径选择
for i = 1:m
% 逐个城市路径选择
for j = 2:n
tabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)
allow_index = ~ismember(citys_index,tabu);
allow = citys_index(allow_index); % 待访问的城市集合
P = allow;
% 计算城市间转移概率
for k = 1:length(allow)
P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
end
P = P/sum(P);
% 轮盘赌法选择下一个访问城市
Pc = cumsum(P);
target_index = find(Pc >= rand);
target = allow(target_index(1));
Table(i,j) = target;
end
end
% 计算各个蚂蚁的路径距离
Length = zeros(m,1);
for i = 1:m
Route = Table(i,:);
for j = 1:(n - 1)
Length(i) = Length(i) + D(Route(j),Route(j + 1));
end
Length(i) = Length(i) + D(Route(n),Route(1));
end
% 计算最短路径距离及平均距离
if iter == 1
[min_Length,min_index] = min(Length);
Length_best(iter) = min_Length;
Length_ave(iter) = mean(Length);
Route_best(iter,:) = Table(min_index,:);
else
[min_Length,min_index] = min(Length);
Length_best(iter) = min(Length_best(iter - 1),min_Length);
Length_ave(iter) = mean(Length);
if Length_best(iter) == min_Length
Route_best(iter,:) = Table(min_index,:);
else
Route_best(iter,:) = Route_best((iter-1),:);
end
end
% 更新信息素
Delta_Tau = zeros(n,n);
% 逐个蚂蚁计算
for i = 1:m
% 逐个城市计算
for j = 1:(n - 1)
Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
end
Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
end
Tau = (1-rho) * Tau + Delta_Tau;
% 迭代次数加1,清空路径记录表
iter = iter + 1;
Table = zeros(m,n);
end
%% VI. 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
%% VII. 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
text(citys(i,1),citys(i,2),[' ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')
- 点赞
- 收藏
- 关注作者
评论(0)