Java利用迪克斯特拉(Dijkstra)算法求拓扑关系最短路径
算法简介
迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学迪家迪杰斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点最短路劲算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。
代码实现思路
1.先初始化源节点(起始点)到其他各个拓扑节点的最短距离,可以用map存放,key为节点,value为节点到源节点的距离。
比如数据库中存储的各个拓扑点的信息,我们需要先把数据库各地拓扑点之间的距离,加载出来,用map和矩阵(二维数组)方式。数据库拓扑信息存储表demo:
id | source | target | dist |
1 | v1 | v2 | 15.67 |
soure和target为相连的两个拓扑点,dist是相连接的两个拓扑点之间的距离。
2.初始化源节点到各个节点之间的距离时,源节点到自身节点的距离设为0,到不相连或者间接相连的节点距离设置为最大。
3.从源节点开始,不断循环迭代,各个节点到源节点的最短路线和距离,更新距离map里。当循环遍历到目标节点时,即可求出,源节点到目标节点的最短路线和距离。
更多说明,可以看代码注释。
算法思想
G={V,E}
1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值 [1]
2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中 [1]
3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值 [1]
重复上述步骤2、3,直到S [1] 中包含所有顶点,即W=Vi为止 [1]
代码示例
实际业务代码中应用:
- 点赞
- 收藏
- 关注作者
评论(0)