白话Elasticsearch23-深度探秘搜索技术之通过ngram分词机制实现index-time搜索推荐

举报
小工匠 发表于 2021/09/10 23:30:25 2021/09/10
【摘要】 文章目录 概述官网什么是ngram什么是edge ngramngram和index-time搜索推荐原理例子 概述 继续跟中华石杉老师学习ES,第23篇 课程地址: https:/...


在这里插入图片描述

概述

继续跟中华石杉老师学习ES,第23篇

课程地址: https://www.roncoo.com/view/55


官网

NGram Tokenizer:
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenizer.html

在这里插入图片描述

NGram Token Filter:
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenfilter.html

在这里插入图片描述


Edge NGram Tokenizer:
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenizer.html

在这里插入图片描述

Edge NGram Token Filter:
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenfilter.html

在这里插入图片描述


什么是ngram

什么是ngram

假设有个单词quick,5种长度下的ngram

ngram length=1,会被拆成 q u i c k
ngram length=2,会被拆成 qu ui ic ck
ngram length=3,会被拆成 qui uic ick
ngram length=4,会被拆成 quic uick
ngram length=5,会被拆成 quick

  
 
  • 1
  • 2
  • 3
  • 4
  • 5

其中任意一个被拆分的部分 就被称为ngram 。


什么是edge ngram

quick,anchor首字母后进行ngram

q
qu
qui
quic
quick

  
 
  • 1
  • 2
  • 3
  • 4
  • 5

上述拆分方式就被称为edge ngram


使用edge ngram将每个单词都进行进一步的分词切分,用切分后的ngram来实现前缀搜索推荐功能

举个例子 两个doc
doc1 hello world
doc2 hello we

使用edge ngram拆分

h
he
hel
hell
hello -------> 可以匹配 doc1,doc2

w -------> 可以匹配 doc1,doc2
wo
wor
worl
world
e ---------> 可以匹配 doc2

使用hello w去搜索

hello --> hello,doc1
w --> w,doc1

doc1中hello和w,而且position也匹配,所以,ok,doc1返回,hello world


ngram和index-time搜索推荐原理

搜索的时候,不用再根据一个前缀,然后扫描整个倒排索引了,而是简单的拿前缀去倒排索引中匹配即可,如果匹配上了,那么就好了,就和match query全文检索一样


例子

PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "autocomplete_filter": { 
                    "type":     "edge_ngram",
                    "min_gram": 1,
                    "max_gram": 20
                }
            },
            "analyzer": {
                "autocomplete": {
                    "type":      "custom",
                    "tokenizer": "standard",
                    "filter": [
                        "lowercase",
                        "autocomplete_filter" 
                    ]
                }
            }
        }
    }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

helloworld
设置

min ngram = 1
max ngram = 3

  
 
  • 1
  • 2

使用edge_ngram ,则会被拆分为一下 ,

h
he
hel

  
 
  • 1
  • 2
  • 3

在这里插入图片描述


知识点: autocomplete

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyzer.html

在这里插入图片描述


GET /my_index/_analyze
{
  "analyzer": "autocomplete",
  "text": "helll world"
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述

设置mapping , 查询的时候还是使用standard

PUT /my_index/_mapping/my_type
{
  "properties": {
      "title": {
          "type":     "text",
          "analyzer": "autocomplete",
          "search_analyzer": "standard"
      }
  }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

造数据

PUT /my_index/my_type/1
{
  "content":"hello Jack"
}


PUT /my_index/my_type/2
{
  "content":"hello John"
}




PUT /my_index/my_type/3
{
  "content":"hello Jose"
}



  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

查询

GET /my_index/my_type/_search 
{
  "query": {
    "match": {
      "content": "hello J"
    }
  }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

返回:

{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "2",
        "_score": 0.2876821,
        "_source": {
          "content": "hello John"
        }
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "content": "hello Jack"
        }
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "3",
        "_score": 0.2876821,
        "_source": {
          "content": "hello Jose"
        }
      }
    ]
  }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 如果用match,只有hello的也会出来,全文检索,只是分数比较低
  • 推荐使用match_phrase,要求每个term都有,而且position刚好靠着1位,符合我们的期望的

文章来源: artisan.blog.csdn.net,作者:小小工匠,版权归原作者所有,如需转载,请联系作者。

原文链接:artisan.blog.csdn.net/article/details/98124341

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。