从源码角度深入理解Handler

举报
江南一点雨 发表于 2021/08/17 01:03:05 2021/08/17
【摘要】 为了获得良好的用户体验,Android不允许开发者在UI线程中调用耗时操作,否则会报ANR异常,很多时候,比如我们要去网络请求数据,或者遍历本地文件夹都需要我们在新线程中来完成,新线程中不能更新UI,一个常规的解决方法就是在主线程中实例化一个Handler,在新线程中将消息封装在一个Message中,发送到主线程中,然后主线程来更新界面。这些都很简单,我们就不多说了,今...

为了获得良好的用户体验,Android不允许开发者在UI线程中调用耗时操作,否则会报ANR异常,很多时候,比如我们要去网络请求数据,或者遍历本地文件夹都需要我们在新线程中来完成,新线程中不能更新UI,一个常规的解决方法就是在主线程中实例化一个Handler,在新线程中将消息封装在一个Message中,发送到主线程中,然后主线程来更新界面。这些都很简单,我们就不多说了,今天我主要想通过阅读源码来理解Handler,Looper之间的关系。


缘起


促使我去看Handler源码是由于在公司的开发中遇到的一个问题,一位同事在一个非UI线程中实例化Handler,结果程序一启动就崩溃,当时来问我,我以前也没遇到过,不知道是什么原因,但是我发现这个问题是由于新线程导致的,就是不能在新线程中创建Handler,但是究竟是什么原因,当时并没有发现。


上下求索


这周时间充裕,决定看一下原因,通过阅读源码来彻底了解Handler的工作机制。

首先,会崩溃的代码是这样的:

 new Thread(new Runnable() { @Override public void run() { mHandler = new Handler() { @Override public void handleMessage(Message msg) { super.handleMessage(msg); switch (msg.what) { case 0: Log.i("lenve", msg.obj.toString()); break; default: break; } } }; } }).start();
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

报的错是这样的:
这里写图片描述

说是Can’t create handler inside thread that has not called Looper.prepare(),就是说呀不能在没有调用Looper.prepare的线程中创建Handler,那么我们在创建之前如果调用Looper.prepared(),结果又会怎么样呢?

好吧,那么就在创建Handler之前加上一句Looper.prepared(),这个时候应用不崩溃了,而且日志也能如期打印出来,代码如下:

 new Thread(new Runnable() { @Override public void run() { Looper.prepare(); mHandler = new Handler() { @Override public void handleMessage(Message msg) { super.handleMessage(msg); switch (msg.what) { case 0: Log.i("lenve", msg.obj.toString()); break; default: break; } } }; } }).start();
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

那么Looper.prepare()究竟做了什么?我们先来看看Handler的构造方法,代码如下:

 /** * Default constructor associates this handler with the {@link Looper} for the * current thread. * * If this thread does not have a looper, this handler won't be able to receive messages * so an exception is thrown. */ public Handler() { this(null, false); }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

看代码之前我们先来看看注释,说是默认的构造方法将这个Handler与当前的Thread关联,如果当前的Thread没有一个Looper,那么这个Handler不能接收消息,会抛出一个异常。然后看看代码,还是很简单的,只有一句,this(null,false);这是调用了另外一个有两个参数的构造方法,那我们就再看看这个有两个参数的构造函数:

 public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

这个构造函数有两个参数,第一个参数是回调函数,这个不用多说,第二参数是说这个Handler是不是异步的,很明显,如果我们使用了无参构造方法来获得一个Handler实例,那么这个Handler不是异步的。那么这个构造函数中有一句是获得一个Looper对象的,如果获得的值为null,那么就会抛出一个异常,这个抛出的异常就是我们刚才看到的那么异常,看来问题就出在mLooper = Looper.myLooper();这句里。那我们看看myLooper这个方法:

 /** * Return the Looper object associated with the current thread.  Returns * null if the calling thread is not associated with a Looper. */ public static Looper myLooper() { return sThreadLocal.get(); }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

注释说的很明白了,返回一个和当前Thread关联的Looper对象,如果当前Thread没有关联一个Looper对象,那么就会返回一个null。这里之所以会返回一个null是因为TheadLocal创建之后就没有执行过set方法,所以它根本就不会有Looper对象。那我们看看Looper.prepare()究竟做了什么让Handler可以正常使用了。
源码如下:

 public static void prepare() { prepare(true); } private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

当我们执行prepare函数时,它又会调用它的重载函数,在这个重载函数中,如果当前Thead已经有了一个Looper,那么再次调用就会抛出一个异常,这也是为什么我们常说一个线程中只有一个Looper,如果当前线程中没有Looper,那么就会创建一个新的Looper给它。

这下总算弄明白了,为什么在新线程中使用Handler一定要先调用Looper.prepare(),这个时候有的童鞋可能会有疑问,什么我们在UI线程中使用Handler不用先调用一下Looper.prepare()?
这里我们得看看ActivityThread类中的相关方法

 public static void main(String[] args) { SamplingProfilerIntegration.start(); // CloseGuard defaults to true and can be quite spammy.  We // disable it here, but selectively enable it later (via // StrictMode) on debug builds, but using DropBox, not logs. CloseGuard.setEnabled(false); Environment.initForCurrentUser(); // Set the reporter for event logging in libcore EventLogger.setReporter(new EventLoggingReporter()); Security.addProvider(new AndroidKeyStoreProvider()); // Make sure TrustedCertificateStore looks in the right place for CA certificates final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId()); TrustedCertificateStore.setDefaultUserDirectory(configDir); Process.setArgV0("<pre-initialized>"); Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); thread.attach(false); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); } AsyncTask.init(); if (false) { Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread")); } Looper.loop(); throw new RuntimeException("Main thread loop unexpectedly exited"); }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

在ActivityThread类的main方法中调用了prepareMainLooper方法,那我们看看这个方法:

 /** * Initialize the current thread as a looper, marking it as an * application's main looper. The main looper for your application * is created by the Android environment, so you should never need * to call this function yourself.  See also: {@link #prepare()} */ public static void prepareMainLooper() { prepare(false); synchronized (Looper.class) { if (sMainLooper != null) { throw new IllegalStateException("The main Looper has already been prepared."); } sMainLooper = myLooper(); } }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

最后的最后,还有调用了我们前文说的prepare方法。也就是说在UI线程中,不用我们自己创建Looper,系统会自动为我们添加一个Looper。

说到这里,第一个问题总算解决了,下面我们就要看看消息的发送流程了。
当我们调用sendMessage方法时,经过一路追踪,最后来到了这里:

 public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

先是一个Message队列,这个mQueue在我们创建一个Looper对象的时候就被new出来了。最后返回的这个东西是把一个Message放入Message队列中,我们再看看这个入队的方法:

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

注意这里有个msg.target = this;把当前的Handler交给了msg.target,这里是个伏笔,下文我们会用到这个。继续往下看,这个是MessageQueue类中的enqueueMessage方法:

 boolean enqueueMessage(Message msg, long when) { if (msg.isInUse()) { throw new AndroidRuntimeException(msg + " This message is already in use."); } if (msg.target == null) { throw new AndroidRuntimeException("Message must have a target."); } boolean needWake; synchronized (this) { if (mQuiting) { RuntimeException e = new RuntimeException( msg.target + " sending message to a Handler on a dead thread"); Log.w("MessageQueue", e.getMessage(), e); return false; } msg.when = when; Message p = mMessages; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue.  Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } } if (needWake) { nativeWake(mPtr); } return true; }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

这是关于入队操作,出队操作则在Looper类的loop方法中:

 public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } msg.target.dispatchMessage(msg); if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycle(); } }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

这里会不断的读消息,读到消息后调用msg.target.dispatchMessage(msg);这个msg.target就是我们前面说的那个Handler,也就是我们发消息的Handler,这个时候会调用Handler的dispatchMessage(Messge msg)这个方法。在看看这个方法:

 /** * Subclasses must implement this to receive messages. */ public void handleMessage(Message msg) { } /** * Handle system messages here. */ public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

在dispatchMessage方法中,最终会调用handleMessage(msg);而handleMessage();的方法体是空的,原因是这个方法是由我们自己来实现的。

转了好大一圈,终于回来了。

另外我们有的时候会用到Handler的post方法,这个方法可以让我们在非UI线程中更新UI,看看源码,如下:

 public final boolean post(Runnable r) { return  sendMessageDelayed(getPostMessage(r), 0); }
  
 
  • 1
  • 2
  • 3
  • 4

getPostMessage方法会给msg一个回调函数:

 private static Message getPostMessage(Runnable r) { Message m = Message.obtain(); m.callback = r; return m; }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5

这样,当我们在最后一步调用dispatchMessage方法时,就不会走上文说的流程,而是会跑到这个方法里来:

 private static void handleCallback(Message message) { message.callback.run(); }
  
 
  • 1
  • 2
  • 3

可以看出,最后调用了run()方法。

还有一个runOnUiThread,这个也可以在非UI线程中更新UI,看看代码:

 public final void runOnUiThread(Runnable action) { if (Thread.currentThread() != mUiThread) { mHandler.post(action); } else { action.run(); } }
  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

这个逻辑也很简单,如果当前的Thread是UIThread,则直接调用上面说的post 方法,如果是UIThread,则直接run()方法中的代码。

所以我个人觉得这两个方法都是有点折腾,最好就是统一在新线程中发消息,UI线程收消息,然后更新界面。反正这两个方法的原理本身也是这样。

好了,就这么多吧。

本文参考Android异步消息处理机制完全解析,带你从源码的角度彻底理解

文章来源: wangsong.blog.csdn.net,作者:_江南一点雨,版权归原作者所有,如需转载,请联系作者。

原文链接:wangsong.blog.csdn.net/article/details/49227213

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。