java:MapReduce原理及入门实例:wordcount

举报
彭世瑜 发表于 2021/08/13 23:02:45 2021/08/13
【摘要】 MapReduce原理 MapperTask -> Shuffle(分区排序分组) -> ReducerTask 1 MapReduce执行步骤 Map处理任务 读取文件每一行,解析成<key、value>,调用map函数处理逻辑对key、value处理,行成新的key、value数据分区 Reduce处理任务 拷贝map任务输出到...

在这里插入图片描述

MapReduce原理

MapperTask -> Shuffle(分区排序分组) -> ReducerTask

  
 

在这里插入图片描述

MapReduce执行步骤

  1. Map处理任务
    1. 读取文件每一行,解析成<key、value>,调用map函数
    2. 处理逻辑对key、value处理,行成新的key、value
    3. 数据分区
  2. Reduce处理任务
    1. 拷贝map任务输出到reduce节点,对map任务输出合并,排序
    2. 处理逻辑处理key、value,行成新的key、value
    3. 保存到文件中

wordcount示例

  1. 准备文件
    vim word.txt
hello Jack
hello Tom
hello Jimi
hello Mili
hello Make

  
 
  1. 上传文件
hadoop fs -put word.txt /word.txt
hadoop fs -ls /   # 查看

  
 
  1. 运行任务
cd hadoop-2.8.5/share/hadoop/mapreduce

hadoop jar hadoop-mapreduce-examples-2.8.5.jar wordcount /word.txt /wcout

  
 
  1. 查看任务结果
hadoop fs -ls /wcout
hadoop fs -cat /wcout/part-r-00000

Jack 1
Jimi 1
Make 1
Mili 1
Tom 1
hello   5

  
 

java示例

  1. mapper
package mr;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * 继承Mapper 实现map计算
 * 传递的参数需要实现序列化,通过网络传输
 */
public class MapDemo extends Mapper<LongWritable, Text, Text, LongWritable>{ protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 接收数据 String line = value.toString(); // 切分单词 String[] words = line.split(" "); // 将每个单词转为数字 for(String word: words) { context.write(new Text(word), new LongWritable(1)); } }
}
  
 
  1. reducer
package mr;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;

/**
 * 继承Reducer,实现reduce计算
 */
public class ReduceDemo extends Reducer<Text, LongWritable, Text, LongWritable> { @Override protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { // 定义计数器 long count = 0; // 统计 for (LongWritable counter : values) { count += counter.get(); } // 输出结果 context.write(key, new LongWritable(count)); }
}
  
 
  1. job
package mr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * 统计单词个数
 * 运行:hadoop jar hdfsdemo.jar
 * 根据实际路径指定输入输出文件 
 */
public class WordCount { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { // 构建Job对象 Job job = Job.getInstance(new Configuration()); // 注意:main方法所在类 job.setJarByClass(WordCount.class); // 设置输入文件路径 FileInputFormat.setInputPaths(job, new Path(args[0])); // 设置Mapper属性 job.setMapperClass(MapDemo.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); // 设置Reducer属性 job.setReducerClass(ReduceDemo.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); // 设置输出文件路径 FileOutputFormat.setOutputPath(job, new Path(args[1])); // 提交任务 job.waitForCompletion(true); }
}
  
 

WordCount类的打包为jar,上传至服务器,运行

hadoop jar hdfsdemo.jar /word.txt /out

  
 

查看输出文件,和haoop中自带的wordcount输出一致

Jack	1
Jimi	1
Make	1
Mili	1
Tom 1
hello	5

  
 

总结

导入依赖jar包
hadoop-2.8.5/share/hadoop/mapreduce/

自定义任务

  1. 分析业务逻辑,确定输入输出样式
  2. 继承Mapper
  3. 继承Reducer
  4. 通过job对象组装Mapper和Reducer

文章来源: pengshiyu.blog.csdn.net,作者:彭世瑜,版权归原作者所有,如需转载,请联系作者。

原文链接:pengshiyu.blog.csdn.net/article/details/84504703

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。