Java笔记:Map从入门到性能分析
Map从入门到性能分析
课程目标
- HashMap的构造方法,合适的遍历,复制转换
- HashMap的底层原理(存取、初始化、扩容)
- TreeMap、LinkedHashMap的用法
- 性能分析
运行环境:
- Idea
- Java Version 1.8
Map接口及其实现类
1、继承关系
Map -HashMap -LinkedHashMap -SortedMap -TreeMap
- 1
- 2
- 3
- 4
- 5
2、Map接口通用的方法
// 存
V put(K key, V value)
// 取
V get(Object key)
// 数量
int size()
// 删除
V remove(Object key)
// 包含测试
boolean containsKey(Object key)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
3、HashMap构造方法
HashMap()
// initialCapacity 初始化大小
HashMap(int initialCapacity)
// loadFactor 负载因子
HashMap(int initialCapacity, float loadFactor)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
4、HashMap基本用法
package com.demo.map;
import java.util.HashMap;
import java.util.Map;
public class MapDemo { public static void main(String[] args) { Map<String, Integer> userMap = new HashMap<>(); userMap.put("Tom", 23); System.out.println(userMap.get("Tom")); // 23 }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
5、HashMap的Entry结构
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next;
}
- 1
- 2
- 3
- 4
- 5
- 6
6、使用示例
Map<String, Integer> userMap = new HashMap<>();
userMap.put("Tom", 21);
userMap.put("Jack", 22);
userMap.put("Steve", 23);
System.out.println(userMap.get("Tom"));
// 21
System.out.println(userMap);
// {Tom=21, Steve=23, Jack=22}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
7、HashMap的遍历-keySet
获取key, 再通过key取到value
for (String key : userMap.keySet()) { System.out.println(key + ": " + userMap.get(key));
}
// Tom: 21
// Steve: 23
// Jack: 22
- 1
- 2
- 3
- 4
- 5
- 6
8、HashMap的遍历-values
只能获取value
for (Integer value : userMap.values()) { System.out.println(value);
}
// 21
// 23
// 22
- 1
- 2
- 3
- 4
- 5
- 6
9、HashMap的遍历-entrySet
获取Map.Entry 对象
for (Map.Entry<String, Integer> entry : userMap.entrySet()) { System.out.println(entry.getKey() + ": " + entry.getValue());
}
// Tom: 21
// Steve: 23
// Jack: 22
- 1
- 2
- 3
- 4
- 5
- 6
10、HashMap的遍历-Iterator
import java.util.Iterator;
Iterator<Map.Entry<String, Integer>> iterator = userMap.entrySet().iterator();
while (iterator.hasNext()){ Map.Entry<String, Integer> entry = iterator.next(); System.out.println(entry.getKey() + ": " + entry.getValue());
}
// Tom: 21
// Steve: 23
// Jack: 22
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
11、性能分析
完整代码
package com.demo.map;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
public class MapDemo { public static void showMapByKeySet(Map<String, Integer> userMap) { long start = System.currentTimeMillis(); Integer value; for (String key : userMap.keySet()) { // System.out.println(key + "=" + userMap.get(key)); value = userMap.get(key); } long end = System.currentTimeMillis(); System.out.println("keySet=" + (end - start)); } public static void showMapByValues(Map<String, Integer> userMap) { long start = System.currentTimeMillis(); Integer value; for (Integer v : userMap.values()) { // System.out.println(value); value = v; } long end = System.currentTimeMillis(); System.out.println("values=" + (end - start)); } public static void showMapByEntrySet(Map<String, Integer> userMap) { long start = System.currentTimeMillis(); Integer value; for (Map.Entry<String, Integer> entry : userMap.entrySet()) { // System.out.println(entry.getKey() + ": " + entry.getValue()); value = entry.getValue(); } long end = System.currentTimeMillis(); System.out.println("entrySet=" + (end - start)); } public static void showMapByIterator(Map<String, Integer> userMap) { long start = System.currentTimeMillis(); Iterator<Map.Entry<String, Integer>> iterator = userMap.entrySet().iterator(); Integer value; while (iterator.hasNext()) { Map.Entry<String, Integer> entry = iterator.next(); // System.out.println(entry.getKey() + ": " + entry.getValue()); value = entry.getValue(); } long end = System.currentTimeMillis(); System.out.println("iterator=" + (end - start)); } public static void main(String[] args) { Map<String, Integer> userMap = new HashMap<>(); String[] keys = new String[]{ "a", "b", "c", "d", "e", "f", "g", "h", "i", "j" }; String key; for (int i = 0; i < 100000; i++) { // 让key接近真实环境 key = keys[(int) (Math.random() * keys.length)] + i * 100; userMap.put(key, i); } showMapByKeySet(userMap); // keySet=16 showMapByValues(userMap); // values=9 showMapByEntrySet(userMap); // entrySet=10 showMapByIterator(userMap); // iterator=9 }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
结论:
- 推荐 Iterator
- 避免 keySet
- 常用 EntrySet
12、HashMap示例
Map<String, String> user1 = new HashMap<>();
user1.put("name", "Tom");
user1.put("age", "23");
Map<String, String> user2 = new HashMap<>();
user2.put("name", "Jack");
user2.put("age", "24");
Map<String, String> user3 = new HashMap<>();
user3.put("name", "Steve");
user3.put("age", "25");
// 将数据放入Map
Map<String, Map> userMap = new HashMap<>();
userMap.put("Tom", user1);
userMap.put("Jack", user2);
userMap.put("Steve", user3);
System.out.println(userMap);
// {
// Tom={name=Tom, age=23},
// Steve={name=Steve, age=25},
// Jack={name=Jack, age=24}
// }
// 将数据放入List
List<Map> userList = new ArrayList<>();
userList.add(user1);
userList.add(user2);
userList.add(user3);
System.out.println(userList);
// [
// {name=Tom, age=23},
// {name=Jack, age=24},
// {name=Steve, age=25}
// ]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
HashMap底层原理
1、HashMap默认参数
- 初始化大小=16
- 负载因子=0.75 有效长度:16*0.75 = 12
- 扩容倍数=2
HashMap()
// 等同于
HashMap(16, 0.75f)
- 1
- 2
- 3
- 4
根据hash码取余数来决定位置
key是字符串类型
先使用hashCode()方法将key转换成hash码后并进行优化
对优化后的hash码进行取址,确定在HashMap中的位置
int indexFor(int h, int length)
- 1
数字key存放原理
初始大小 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
要存入的值
120 % 16 = 8
37 % 16 = 5
61 % 16 = 13
40 % 16 = 8
92 % 16 = 12
78 % 16 = 14
存放位置 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 37 120 92 61 78 40
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
验证代码
Map<Integer, String> map = new HashMap<>();
map.put(120, "120");
map.put(37, "37");
map.put(61, "61");
map.put(40, "40");
map.put(92, "92");
map.put(78, "78");
System.out.println(map);
// {37=37, 120=120, 40=40, 92=92, 61=61, 78=78}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
2、带参构造方法
HashMap(int initialCapacity, float loadFactor)
HashMap(int initialCapacity)
HashMap(5)
- 1
- 2
- 3
- 4
initialCapacity 初始化长度内部计算
// 1073741824
static final int MAXIMUM_CAPACITY = 1 << 30;
static final int tableSizeFor(int cap) { int n = cap - 1; // 4 => 100 n |= n >>> 1; // 100 | 010 => 110 n |= n >>> 2; // 110 | 001 => 111 n |= n >>> 4; // 111 | 000 => 111 n |= n >>> 8; // 111 | 000 => 111 n |= n >>> 16; // 111 | 000 => 111 // 111 => 7 + 1 => 8 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
// 取到大于5,最小的2的n次方
tableSizeFor(5) // 8
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
2倍扩容后重新计算位置
120 % 16 = 8 -> 120 % 32 = 24
37 % 16 = 5 -> 37 % 32 = 5
61 % 16 = 13 -> 61 % 32 = 29
40 % 16 = 8 -> 40 % 32 = 8
92 % 16 = 12 -> 92 % 32 = 28
78 % 16 = 14 -> 78 % 32 = 14
- 1
- 2
- 3
- 4
- 5
- 6
3、问题:
// 问题1:初始化长度是多少?
new HashMap(5) // 8
// 问题2:以下初始化后存入10000条数据,会发生扩容吗?
new HashMap(10000, 0.75f)
// 后台优化:2^14 = 16384 * 0.75 = 12288
// 所以,不会扩容
- 1
- 2
- 3
- 4
- 5
- 6
- 7
4、性能测试
package com.demo.map;
import java.util.HashMap;
import java.util.Map;
/**
* 创建10个HashMap,每个HashMap添加1万条数据
* 传递不同的构造参数,比较速度
*
* initialCapacity=16 avg=2318299
* initialCapacity=10000 avg=1926625
*/
public class MapDemo { public static void main(String[] args) { long sum = 0L; for (int i = 0; i < 10; i++) { sum += inputMap(10000); } System.out.println("avg=" + (sum/10)); } public static long inputMap(int initialCapacity) { Map<String, Object> map = new HashMap<>(initialCapacity); String key; // 获取纳秒 long start = System.nanoTime(); for (int i = 0; i < 10000; i++) { key = String.valueOf(i); map.put(key, "value"); } long end = System.nanoTime(); long timespan = end - start; System.out.println("timespan=" + timespan); return timespan; }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
HashMap常用方法
添加元素put putIfAbsent
判断是否为空isEmpty,删除节点remove,清空clear
判断是否有key(containsKey),是否有value(containsValue)
替换某个key的value(replace, put)
代码实例
Map<String, Object> map = new HashMap<>();
// 添加数据
map.put("name", "Tom");
map.put("age", "12");
// 替换数据
map.put("name", "Jack");
// 替换数据
map.replace("name", "Steve");
//存在则不替换
map.putIfAbsent("name", "Seven");
// 移除数据
map.remove("age");
// 判断key存在,值存在
System.out.println(map.containsKey("name")); // true
System.out.println(map.containsValue("name")); // false
// 判空
System.out.println(map.isEmpty());
System.out.println(map);
// {name=Steve, age=12}
// 清空数据
map.clear();
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
forEach (Lambda表达式)
Map<String, Integer> map = new HashMap<>();
// 添加数据
map.put("a", 1);
map.put("b", 2);
map.forEach((key, value) -> { System.out.println(key + ": " + value);
});
// a: 1
// b: 2
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
getOrDefault获取默认值
Map<String, Integer> map = new HashMap<>();
Integer value = map.getOrDefault("a", 666);
System.out.println(value); // 666
- 1
- 2
- 3
- 4
LinkedHashMap
性能测试
数据量不同,性能表现也不一样
package com.demo.map;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;
public class MapDemo { public static void main(String[] args) { Map<String, Integer> map = new HashMap<>(); Map<String, Integer> linkedMap = new LinkedHashMap<>(); long start, end; // 插入测试 start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { map.put(String.valueOf(i), i); } end = System.currentTimeMillis(); System.out.println("map put=" + (end - start)); start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { linkedMap.put(String.valueOf(i), i); } end = System.currentTimeMillis(); System.out.println("linkedMap put=" + (end - start)); // 取出测试 start = System.currentTimeMillis(); for (Integer value : map.values()) { } end = System.currentTimeMillis(); System.out.println("map get=" + (end - start)); start = System.currentTimeMillis(); for (Integer value : map.values()) { } end = System.currentTimeMillis(); System.out.println("linkedMap get=" + (end - start)); // map put = 29 // linkedMap put = 22 // map get = 6 // linkedMap get = 3 }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
LinkedHashMap实现LRU(Least Recently Used)
LinkedHashMap有序
LRU实现
package com.demo.map;
import java.util.LinkedHashMap;
import java.util.Map;
public class LRUMap<K, V> extends LinkedHashMap<K, V> { private int maxSize; public LRUMap(int maxSize){ super(16, 0.75f, true); this.maxSize = maxSize; } @Override protected boolean removeEldestEntry(Map.Entry<K, V> eldest) { return size() > this.maxSize; }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
测试代码
package com.demo.map;
public class MapDemo { public static void main(String[] args) { LRUMap<String, Integer> lruMap = new LRUMap<>(3); lruMap.put("a", 1); lruMap.put("b", 2); lruMap.get("a"); lruMap.put("c", 3); lruMap.put("d", 4); System.out.println(lruMap); // {a=1, c=3, d=4} }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
TreeMap
默认是key升序排序,可以自定义比较器Comparator
package com.demo.map;
import java.util.Comparator;
import java.util.Map;
import java.util.TreeMap;
public class MapDemo { public static void main(String[] args) { Map<String, String> treeMap = new TreeMap<>(new Comparator<String>() { @Override public int compare(String o1, String o2) { return o2.compareTo(o1); } }); treeMap.put("a", "a"); treeMap.put("c", "c"); treeMap.put("b", "b"); System.out.println(treeMap); // 默认: {a=a, b=b, c=c} // 比较器排序后:{c=c, b=b, a=a} }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
耗时对比
package com.demo.map;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.TreeMap;
public class MapDemo { public static void main(String[] args) { Map<String, Integer> hashMap = new HashMap<>(); Map<String, Integer> linkedMap = new LinkedHashMap<>(); Map<String, Integer> treeMap = new TreeMap<>(); long count = 1000; long start, end; // 插入测试 start = System.currentTimeMillis(); for (int i = 0; i < count; i++) { hashMap.put(String.valueOf(i), i); } end = System.currentTimeMillis(); System.out.println("map put=" + (end - start)); start = System.currentTimeMillis(); for (int i = 0; i < count; i++) { linkedMap.put(String.valueOf(i), i); } end = System.currentTimeMillis(); System.out.println("linkedMap put=" + (end - start)); start = System.currentTimeMillis(); for (int i = 0; i < count; i++) { treeMap.put(String.valueOf(i), i); } end = System.currentTimeMillis(); System.out.println("treeMap put=" + (end - start)); // 取出测试 start = System.currentTimeMillis(); for (Integer value : hashMap.values()) { } end = System.currentTimeMillis(); System.out.println("map get=" + (end - start)); start = System.currentTimeMillis(); for (Integer value : linkedMap.values()) { } end = System.currentTimeMillis(); System.out.println("linkedMap get=" + (end - start)); start = System.currentTimeMillis(); for (Integer value : treeMap.values()) { } end = System.currentTimeMillis(); System.out.println("treeMap get=" + (end - start)); }
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
课程小结
- Map接口的常见方法
- 对比不同的遍历方法,效率
- 底层原理,创建Map时,针对不同情况选择合适的构造方法
- HashMap、LinkedMap、TreeMap区别与选择
文章来源: pengshiyu.blog.csdn.net,作者:彭世瑜,版权归原作者所有,如需转载,请联系作者。
原文链接:pengshiyu.blog.csdn.net/article/details/109300699
- 点赞
- 收藏
- 关注作者
评论(0)