Mathematics for Machine Learning--学习笔记【合集】
【摘要】 Paer one:Mathematical Foundations 基础数学
1 Introduce and Motivation 书籍的介绍和出书缘由
1.1 Finding Words for Intuitions 直观描述1.2 Two Ways to Read This Book 阅读这本书的两种方法1.3 Exercises and Feedback 练习...
Paer one:Mathematical Foundations 基础数学
1 Introduce and Motivation 书籍的介绍和出书缘由
- 1.1 Finding Words for Intuitions 直观描述
- 1.2 Two Ways to Read This Book 阅读这本书的两种方法
- 1.3 Exercises and Feedback 练习和反馈
2 Linear Algebra 线性代数
- 2.1 System of Linear Equations 线性方程组
- 2.2 Matricies 矩阵
- 2.3 Solving System of Linear Equations 解线性方程组
- 2.4 Vector Spaces 向量空间
- 2.5 Linear Independence 线性独立
- 2.6 Basis and Rank 基&秩
- 2.7 Linear Mappings 线性映射
- 2.8 Affine Spaces 仿射空间
- 2.9 Exercises 第一章习题指导
3 Analytic Geometry 解析几何
- 3.1 Norms 标准
- 3.2 Inner Products 内积
- 3.3 Lengths and Distances
- 3.4 Angles and Orthogonality
- 3.5 Orthonorma Basis
- 3.6 Orthogonal Complement
- 3.7 Inner Product of Functions
- 3.8 Orthogonal Projections
- 3.9 Rotations
- 3.10 Further Reading Exercises
4 Matrix Decompositions 矩阵分解
- 4.1 Determinant and Trace
- 4.2 Eigenvalues and Eigenvectors
- 4.3 Cholesky Decomposition
- 4.4 Eigendecomposition and Diagonalization
- 4.5 Singular Value Decomposition
- 4.6 Matrix Approximation
- 4.7 Matrix Phylogeny
- 4.8 Further Reading Exercises
5 Vector Calculus 向量微积分
- 5.1 Differentiation of Univariate Functions
- 5.2 Partial Differentiation and Gradients
- 5.3 Gradients of Vector-Valued Functions
- 5.4 Gradients of Matrices
- 5.5 Useful Identities for Computing Gradients
- 5.6 Backpropagation and Automatic Differentiation
- 5.7 Higher-Order Derivatives
- 5.8 Linearization and Multivariate Taylor Series
- 5.9 Further Reading Exercises
6 Probability and Distributions 概率&分布
- 6.1 Construction of a Probability Space
- 6.2 Discrete and Continuous Probabilities
- 6.3 Sum Rule,Product Rule,and Bayes‘ Theorem
- 6.4 Summary Statistics and Independence
- 6.5 Gaussian Distribution
- 6.6 Conjugacy and the Exponential Family
- 6.7 Change of Variables/Inverse Transform
- 6.8 Further Reading Exercises
7 Continuous Optimization 连续优化
- 7.1 Optimization Using Gradient Descent
- 7.2 Constrained Optimization and Lagrange MultipliersMultipliers
- 7.3 Convex Optimization
- 7.4 Further Reading Exercises
Part two:Center Machine Learning Problems
8 When Models Meet Data
9 Liner Regression
10 Dimensionality Reduction with Principal Component Analysis
11 Density Estimation with Gaussian Mixture Models
12 Classification with Support Vector Machines
文章来源: haihong.blog.csdn.net,作者:海轰Pro,版权归原作者所有,如需转载,请联系作者。
原文链接:haihong.blog.csdn.net/article/details/113100502
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)