Mathematics for Machine Learning--学习笔记【合集】

举报
海轰Pro 发表于 2021/08/05 23:35:36 2021/08/05
【摘要】 Paer one:Mathematical Foundations 基础数学 1 Introduce and Motivation 书籍的介绍和出书缘由 1.1 Finding Words for Intuitions 直观描述1.2 Two Ways to Read This Book 阅读这本书的两种方法1.3 Exercises and Feedback 练习...

Paer one:Mathematical Foundations 基础数学

1 Introduce and Motivation 书籍的介绍和出书缘由

  • 1.1 Finding Words for Intuitions 直观描述
  • 1.2 Two Ways to Read This Book 阅读这本书的两种方法
  • 1.3 Exercises and Feedback 练习和反馈

2 Linear Algebra 线性代数

  • 2.1 System of Linear Equations 线性方程组
  • 2.2 Matricies 矩阵
  • 2.3 Solving System of Linear Equations 解线性方程组
  • 2.4 Vector Spaces 向量空间
  • 2.5 Linear Independence 线性独立
  • 2.6 Basis and Rank 基&秩
  • 2.7 Linear Mappings 线性映射
  • 2.8 Affine Spaces 仿射空间
  • 2.9 Exercises 第一章习题指导

3 Analytic Geometry 解析几何

  • 3.1 Norms 标准
  • 3.2 Inner Products 内积
  • 3.3 Lengths and Distances
  • 3.4 Angles and Orthogonality
  • 3.5 Orthonorma Basis
  • 3.6 Orthogonal Complement
  • 3.7 Inner Product of Functions
  • 3.8 Orthogonal Projections
  • 3.9 Rotations
  • 3.10 Further Reading Exercises

4 Matrix Decompositions 矩阵分解

  • 4.1 Determinant and Trace
  • 4.2 Eigenvalues and Eigenvectors
  • 4.3 Cholesky Decomposition
  • 4.4 Eigendecomposition and Diagonalization
  • 4.5 Singular Value Decomposition
  • 4.6 Matrix Approximation
  • 4.7 Matrix Phylogeny
  • 4.8 Further Reading Exercises

5 Vector Calculus 向量微积分

  • 5.1 Differentiation of Univariate Functions
  • 5.2 Partial Differentiation and Gradients
  • 5.3 Gradients of Vector-Valued Functions
  • 5.4 Gradients of Matrices
  • 5.5 Useful Identities for Computing Gradients
  • 5.6 Backpropagation and Automatic Differentiation
  • 5.7 Higher-Order Derivatives
  • 5.8 Linearization and Multivariate Taylor Series
  • 5.9 Further Reading Exercises

6 Probability and Distributions 概率&分布

  • 6.1 Construction of a Probability Space
  • 6.2 Discrete and Continuous Probabilities
  • 6.3 Sum Rule,Product Rule,and Bayes‘ Theorem
  • 6.4 Summary Statistics and Independence
  • 6.5 Gaussian Distribution
  • 6.6 Conjugacy and the Exponential Family
  • 6.7 Change of Variables/Inverse Transform
  • 6.8 Further Reading Exercises

7 Continuous Optimization 连续优化

  • 7.1 Optimization Using Gradient Descent
  • 7.2 Constrained Optimization and Lagrange MultipliersMultipliers
  • 7.3 Convex Optimization
  • 7.4 Further Reading Exercises

Part two:Center Machine Learning Problems

8 When Models Meet Data

9 Liner Regression

10 Dimensionality Reduction with Principal Component Analysis

11 Density Estimation with Gaussian Mixture Models

12 Classification with Support Vector Machines

文章来源: haihong.blog.csdn.net,作者:海轰Pro,版权归原作者所有,如需转载,请联系作者。

原文链接:haihong.blog.csdn.net/article/details/113100502

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。