递归和非递归实现规律函数
【摘要】 1、问题
A(n) = n / (2 * n + 1)
B1 = 2 + A1;
B2 = 2 + A1 * (2 + A2);
B3 = 2 + A1 * (2 + A2 * (2 + A3));
....以此类推,求B(n)
2、代码实现
#include <stdio.h> /** A(n)...
1、问题
A(n) = n / (2 * n + 1)
B1 = 2 + A1;
B2 = 2 + A1 * (2 + A2);
B3 = 2 + A1 * (2 + A2 * (2 + A3));
....以此类推,求B(n)
B1 = 2 + A1;
B2 = 2 + A1 * (2 + A2);
B3 = 2 + A1 * (2 + A2 * (2 + A3));
....以此类推,求B(n)
2、代码实现
#include <stdio.h>
/**
A(n) = n / (2 * n + 1)
B1 = 2 + A1;
B2 = 2 + A1 * (2 + A2);
B3 = 2 + A1 * (2 + A2 * (2 + A3));
....以此类推,求B()
**/
float A(float n)
{
if (n < 0)
return 0;
float result = n / (2 * n + 1);
return result;
}
//非递归实现
float B(float n)
{
if (n < 0)
return 0;
float sum = 1;
for (int i = n; i >= 1; --i)
{
sum = sum * A(i) + 2;
}
return sum;
}
//递归实现
float recursion_B(float n)
{
if (n < 0)
return 0;
static float sum = 1;
if (n == 0)
return sum;
else
{
sum = sum * A(n) + 2;
recursion_B(n - 1);
}
}
int main()
{
for (int i = 0; i < 20; i++)
printf("B(%d) is %f\n", i, B(i));
printf("recursion_B(10) is %f\n", recursion_B(10));
}
3、运行结果
B(0) is 1.000000
B(1) is 2.333333
B(2) is 2.800000
B(3) is 2.990476
B(4) is 3.073016
B(5) is 3.109957
B(6) is 3.126829
B(7) is 3.134643
B(8) is 3.138300
B(9) is 3.140024
B(10) is 3.140842
B(11) is 3.141232
B(12) is 3.141419
B(13) is 3.141509
B(14) is 3.141552
B(15) is 3.141573
B(16) is 3.141583
B(17) is 3.141588
B(18) is 3.141591
B(19) is 3.141592
recursion_B(10) is 3.140842
文章来源: chenyu.blog.csdn.net,作者:chen.yu,版权归原作者所有,如需转载,请联系作者。
原文链接:chenyu.blog.csdn.net/article/details/78808321
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)