切分算法---Python自然语言处理(2)

举报
择城终老 发表于 2021/07/27 00:03:07 2021/07/27
【摘要】 目录 前言完全切分正向最长匹配逆向最长匹配双向最长匹配 前言 我们需要分析某句话,就必须检测该条语句中的词语。 一般来说,一句话肯定包含多个词语,它们互相重叠,具体输出哪一个由自然语言的切分算法决定。常用的切分算法有完全切分、正向最长匹配、逆向最长匹配以及双向最长匹配。 本篇博文将一一介绍这些常用的切分算法。 完全切分 完全切分是指,找出一段文本...

前言

我们需要分析某句话,就必须检测该条语句中的词语。

一般来说,一句话肯定包含多个词语,它们互相重叠,具体输出哪一个由自然语言的切分算法决定。常用的切分算法有完全切分、正向最长匹配、逆向最长匹配以及双向最长匹配。

本篇博文将一一介绍这些常用的切分算法。

完全切分

完全切分是指,找出一段文本中的所有单词。

不考虑效率的话,完全切分算法其实非常简单。只要遍历文本中的连续序列,查询该序列是否在词典中即可。上一篇我们获取了词典的所有词语dic,这里我们直接用代码遍历某段文本,完全切分出所有的词语。代码如下:

from pyhanlp import *


def load_dictionary(): IOUtil = JClass('com.hankcs.hanlp.corpus.io.IOUtil') path = HanLP.Config.CoreDictionaryPath.replace('.txt', '.mini.txt') dic = IOUtil.loadDictionary([path]) return set(dic.keySet())


def fully_segment(text, dic): list = [] for i in range(len(text)): for j in range(i + 1, len(text) + 1): temp = text[i:j] if temp in dic: list.append(temp) return list


if __name__ == "__main__": dic = load_dictionary() print(fully_segment("在绝对实力面前,一切的说辞都是枉然", dic))

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

词汇

可以看到,完全切分算法输出了文本中所有的单字与词汇。
这里的算法原理是:开始遍历单个字,以该字为首,将后面每个字依次组合到单个字中,分析出这些组合字句是否在词典中。第二次,从第二个字开始,组合后面的字,以此类推。不懂的看下图就明白了。

遍历

正向最长匹配

虽然说完全切分能获取到所有出现在字典中的单词,单字,但是我们获取语句中单字一般来说没有任何意义,我们更希望获取的是中文分词,那种具有意义的词语序列。

比如,上面我们希望“绝对实力”成为一整个词,而不是“绝对”+“实力”之类的碎片。为了达到这个目的,我们需要完善一下我们的算法。考虑到越长的单词表达的意义更加的丰富,于是我们定义单词越长优先级越高。

具体来说,就是在某个下标为起点递增查词的过程中,优先输出更长的单词,这种规则被称为最长匹配算法。该下标的扫描顺序如果从前往后,则称为正向最长匹配,反之则为逆向最长匹配。

下面,我们来实现正向最长匹配,代码如下:

def forward_segment(text, dic): list = [] i = 0 while i < len(text): long_word = text[i] for j in range(i + 1, len(text) + 1): word = text[i:j] if word in dic: if len(word) > len(long_word): long_word = word list.append(long_word) i += len(long_word) return list

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

算法的原理:首先通过while循环判断i是否超出了字符串的大小,如果没有,获取当前第一个字符串为第一个最长匹配结果,接着遍历第一个字符串的所有可能组合结尾,如果在字典中,判断当前词语是否大于前面的最长匹配结果,如果是替换掉最长。遍历完成之后,将最长的结果添加到列表中,然后再获取第二字符,遍历所有结尾组合,获取最长匹配。以此类推。

逆向最长匹配

既然了解了正向如何匹配,那么逆向算法应该也很好写。代码如下:

def backward_segment(text, dic): list = [] i = len(text) - 1 while i >= 0: long_word = text[i] for j in range(0, i): word = text[j:i + 1] if word in dic: if len(word) > len(long_word): long_word = word break list.append(long_word) i -= len(long_word) return list

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

算法的原理:就是上面的正向反过来,但是这里并不是倒推文字,文字还是按语句的顺序,但是长度是从最长到最短,也就是遇到第一个就可以返回了添加了。比正向最长匹配算法节约时间。

双向最长匹配

虽然逆向比正向节约时间,但本身有一个很大的漏洞。假如我现在的句子中有一段“项目的”字符串,那么正向会出现“项目”,“的”两个词汇,而逆向会出现:“项”,“目的”两个词汇。

为此,我们的算法工程师提出了新的匹配规则,双向最长匹配。这是一种融合两种匹配方法的复杂规则,流程如下:

  1. 同时执行正向和逆向最长匹配,若两者的词数不同,则返回词数更少的一个
  2. 否则,返回两者中单字更少的那一个。当单字也相同时,优先返回逆向最长匹配结果

具体代码如下:

#统计单字个数
def count_single_char(list): return sum(1 for word in list if len(word) == 1)

#双向匹配算法
def bidirectional_segment(): f = forward_segment("在绝对实力面前,一切的说辞都是枉然", dic) b = backward_segment("在绝对实力面前,一切的说辞都是枉然", dic) if len(f) < len(b): return f elif len(f) > len(b): return b else: if count_single_char(f)<count_single_char(b): return f else: return b

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

文章来源: liyuanjinglyj.blog.csdn.net,作者:李元静,版权归原作者所有,如需转载,请联系作者。

原文链接:liyuanjinglyj.blog.csdn.net/article/details/114941572

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。