从Python到NumPy,细说最接近人类思维的in操作

举报
天元浪子 发表于 2021/07/27 00:06:49 2021/07/27
【摘要】 在Python语言中,in是一个使用频率非常高的操作符,用于判断对象是否位于字符串、元组、列表、集合或字典中。in操作和人的思维方式高度吻合,写起来近乎于自然语言,充分体现了Python的哲学理念。 >>> 'or' in 'hello world' True >>> 5 in {1,2,3,4} False >>&gt...

在Python语言中,in是一个使用频率非常高的操作符,用于判断对象是否位于字符串、元组、列表、集合或字典中。in操作和人的思维方式高度吻合,写起来近乎于自然语言,充分体现了Python的哲学理念。

>>> 'or' in 'hello world'
True
>>> 5 in {1,2,3,4}
False
>>> 'age' in {'name':'Mike', 'age':18}
True

  
 

有趣的是,除了R、javascript、SQL外,包括C/C++在内的主流语言几乎都不支持in操作。这或许可以解释为什么Python语言被认为是最容易学习的编程语言。

习惯了使用Python的in操作符,有时就会自然而然地应用到NumPy数组操作上。比如,下面的写法看起来没有任何问题。

>>> import numpy as np
>>> a = np.arange(9)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> 5 in a
True
>>> 10 in a
False

  
 

不过,当我尝试在np.where()函数中使用in操作符的时候,出现了意外。

>>> np.where(a>5)
(array([6, 7, 8], dtype=int64),)
>>> np.where(a%2==0)
(array([0, 2, 4, 6, 8], dtype=int64),)
>>> np.where(a in [2,3,5,7])
Traceback (most recent call last):
  File "<pyshell#111>", line 1, in <module> np.where(a in [2,3,5,7])
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

  
 

使用a>5或者a%2==0作为条件,np.where()函数没有问题,但是,使用a in [2,3,5,7],np.where()就会抛出异常。即便写成下面这样,也不能得到期望得结果。

>>> np.where(a in np.array([2,3,5,7]))
(array([], dtype=int64),)

  
 

难道NumPy不支持两个数组之间的in操作吗?不,强大到宇宙无敌的NumPy,怎么会不支持数组之间的in操作呢?NumPy不但支持,而且支持得很好。

>>> p = np.array([2,3,5,7]) # 质数数组
>>> np.in1d(a, p) # 返回a的每一个元素是否是质数的布尔数组
array([False, False,  True,  True, False,  True, False,  True, False])
>>> np.where(np.in1d(a, p)) # 返回数组a中质数的索引序号
(array([2, 3, 5, 7], dtype=int64),)
>>> np.where(np.in1d(a, p), -1, a) # 返回数组a中的质数全部替换为-1的结果
array([ 0,  1, -1, -1,  4, -1,  6, -1,  8])

  
 

np.in1d()的参数如果是多维数组,将被自动扁平化,且返回的布尔数组也是扁平化的一维数组。

>>> np.in1d(a.reshape((3,3)), p)
array([False, False,  True,  True, False,  True, False,  True, False])

  
 

如果np.in1d()的参数是多维的,且期望返回和原数组结构相同的布尔数组,则应使用np.isin()函数。

>>> np.isin(a.reshape((3,3)), p)
array([[False, False,  True], [ True, False,  True], [False,  True, False]])
>>> np.where(np.isin(a.reshape((3,3)), p))
(array([0, 1, 1, 2], dtype=int64), array([2, 0, 2, 1], dtype=int64))

  
 

若是期望得到两个数组的交集而不是交集元素的索引,下面两种方式都可行。

>>> a[np.where(np.isin(a, p))]
array([2, 3, 5, 7])
>>> np.intersect1d(a, p)
array([2, 3, 5, 7])

  
 

第二种方式直接使用np.intersect1d()函数得到两个数组的交集,且自动排序。不过,我更喜欢第一种方式。

文章来源: xufive.blog.csdn.net,作者:天元浪子,版权归原作者所有,如需转载,请联系作者。

原文链接:xufive.blog.csdn.net/article/details/115905288

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。