【小白学习keras教程】一、基于波士顿住房数据集训练简单的MLP回归模型

举报
毛利 发表于 2021/07/16 20:51:12 2021/07/16
【摘要】 @Author:Runsen多层感知机(MLP)有着非常悠久的历史,多层感知机(MLP)是深度神经网络(DNN)的基础算法 MLP基础知识目的:创建用于简单回归/分类任务的常规神经网络(即多层感知器)和Keras MLP结构每个MLP模型由一个输入层、几个隐藏层和一个输出层组成每层神经元的数目不受限制具有一个隐藏层的MLP- 输入神经元数:3- 隐藏神经元数:4- 输出神经元数:2 回归任务...

@Author:Runsen

多层感知机(MLP)有着非常悠久的历史,多层感知机(MLP)是深度神经网络(DNN)的基础算法

MLP基础知识

  • 目的:创建用于简单回归/分类任务的常规神经网络(即多层感知器)和Keras

MLP结构

  • 每个MLP模型由一个输入层、几个隐藏层和一个输出层组成
  • 每层神经元的数目不受限制

具有一个隐藏层的MLP
- 输入神经元数:3 - 隐藏神经元数:4 - 输出神经元数:2

回归任务的MLP

  • 当目标(y)连续时
  • 对于损失函数和评估指标,通常使用均方误差(MSE)
from tensorflow.keras.datasets import boston_housing
(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

数据集描述

  • 波士顿住房数据集共有506个数据实例(404个培训和102个测试)
  • 13个属性(特征)预测“某一地点房屋的中值”
  • 文件编号:https://keras.io/datasets/

1.创建模型

  • Keras模型对象可以用Sequential类创建
  • 一开始,模型本身是空的。它是通过添加附加层和编译来完成的
  • 文档:https://keras.io/models/sequential/
from tensorflow.keras.models import Sequential

model = Sequential()

1-1.添加层

from tensorflow.keras.layers import Activation, Dense
# Keras model with two hidden layer with 10 neurons each 
model.add(Dense(10, input_shape = (13,)))    # Input layer => input_shape should be explicitly designated
model.add(Activation('sigmoid'))
model.add(Dense(10))                         # Hidden layer => only output dimension should be designated
model.add(Activation('sigmoid'))
model.add(Dense(10))                         # Hidden layer => only output dimension should be designated
model.add(Activation('sigmoid'))
model.add(Dense(1))                          # Output layer => output dimension = 1 since it is regression problem
# This is equivalent to the above code block
model.add(Dense(10, input_shape = (13,), activation = 'sigmoid'))
model.add(Dense(10, activation = 'sigmoid'))
model.add(Dense(10, activation = 'sigmoid'))
model.add(Dense(1))

1-2.模型编译

from tensorflow.keras import optimizers

sgd = optimizers.SGD(lr = 0.01)    # stochastic gradient descent optimizer

model.compile(optimizer = sgd, loss = 'mean_squared_error', metrics = ['mse'])    # for regression problems, mean squared error (MSE) is often employed


模型摘要

model.summary()
odel: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 10)                140       
_________________________________________________________________
activation (Activation)      (None, 10)                0         
_________________________________________________________________
dense_1 (Dense)              (None, 10)                110       
_________________________________________________________________
activation_1 (Activation)    (None, 10)                0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                110       
_________________________________________________________________
activation_2 (Activation)    (None, 10)                0         
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 11        
_________________________________________________________________
dense_4 (Dense)              (None, 10)                20        
_________________________________________________________________
dense_5 (Dense)              (None, 10)                110       
_________________________________________________________________
dense_6 (Dense)              (None, 10)                110       
_________________________________________________________________
dense_7 (Dense)              (None, 1)                 11        
=================================================================
Total params: 622
Trainable params: 622
Non-trainable params: 0
_________________________________________________________________

2.培训

  • 使用提供的训练数据训练模型
model.fit(X_train, y_train, batch_size = 50, epochs = 100, verbose = 1)

3.评估

results = model.evaluate(X_test, y_test)
print(model.metrics_names)     # list of metric names the model is employing
print(results)                 # actual figure of metrics computed

print('loss: ', results[0])
print('mse: ', results[1])

在这里插入图片描述

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。