三十四、使用pytesser3 和pillow完成图形验证码的识别
【摘要】 @Author: Runsen
文章目录
灰度化
二值化
降噪
灰度化
像素点是最小的图片单元,一张图片由很多像素点构成,一个像素点的颜色是由RGB三个值来表现的,所以一个像素点对应三个颜色向量矩阵,我们对图像的处理就是对这个像素点的操作。
图片的灰度化,就是让像素点矩阵中的每一个像素点满足 R=G=B,此时这个值叫做灰度...
@Author: Runsen
灰度化
像素点是最小的图片单元,一张图片由很多像素点构成,一个像素点的颜色是由RGB三个值来表现的,所以一个像素点对应三个颜色向量矩阵,我们对图像的处理就是对这个像素点的操作。
图片的灰度化,就是让像素点矩阵中的每一个像素点满足 R=G=B,此时这个值叫做灰度值,白色为0,黑色为255
灰度转化一般公式为:
R=G=B = 处理前的 RX0.3 + GX0.59 + B*0.11
from PIL import Image
image = Image.open('code.jpg')
im = image.convert('L')
- 1
- 2
- 3
二值化
图像的二值化,就是将图像的像素点矩阵中的每个像素点的灰度值设置为0(黑色)或255(白色),从而实现二值化,将整个图像呈现出明显的只有黑和白的视觉效果。
二值化原理是利用设定的一个阈值来判断图像像素是0还是255, 一般小于阈值的像素点变为0, 大于的变成255
这个临界灰度值就被称为阈值,阈值的设置很重要,阈值过大或过小都会对图片造成损坏
选择阈值的原则是:既要尽可能保存图片信息&#
文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。
原文链接:maoli.blog.csdn.net/article/details/88937388
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)